KNOWLEDGE, PERCEPTION, EXPERIENCES AND PRACTICES RELATING TO MALARIA AND INSECTICIDE-TREATED NETS AMONG PREGNANT WOMEN IN BADAGRY LOCAL GOVERNMENT AREA, LAGOS STATE, NIGERIA BY # THEOPHILUS, SEMAKO BALOGUN B.Sc. Hons. (LASU) MATRIC: NO: 168263 A DISSERTATION SUBMITTED TO THE DEPARTMENT OF HEALTH PROMOTION AND EDUCATION, FACULTY OF PUBLIC HEALTH, COLLEGE OF MEDICINE, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF PUBLIC HEALTH (HEALTH PROMOTION AND EDUCATION) UNIVERSITY OF IBADAN # DEDICATION I dedicate this work to the Almighty God, the creator of heaven and earth, it is also dedicated to my wife Mrs. Olubunmi Juliana Balogun, for believing so much in me, and to my parents Pa Chief Asoji- Balogun and Mrs. Wedowe Balogun, for their day to day prayers for me. #### **ACKNOWLEDGEMENT** The pathway to success is always known to be "rugged" it is how one sees or looks upon life that makes the difference. I give glory to God Almighty for Ilis grace and journey mercies over me. I am much grateful to my supervisor, Dr. Frederick Oshiname, who despite his busy schedule, had time to look through my work and made useful amendments, offered constructive suggestions and provided support and excellent goal oriented assistance to make this research a reality. l am immensely grateful to Dr E.O. Oyewolc my "mentor" for his encouragement. constant monitoring and advise which assisted me in the completion of the research work. I cannot but remember my other lecturers, Dr. Femi Dipcolu and Dr M. A. Titiloye for their encouragement. My gratitude goes to all members of the MPH (Health Education & Promotion) class of 2011/2012 set. The commitment and dynamism among this set cannot be over-estimated, I appreciate them all. Lalso appreciate the support and words of encouragement I received from all my colleagues at College of I lealth Technology, Yaba, Lagos. My immense gratitude goes to my dear wife Mrs. Olubummi Julianah Balogun who often reminded me that it is better to do something imperfectly than not doing anything at all. I thank her for being there for me. I also say a big thank you to my children: Dr. Senami Balogun, Ayodeji Balogun, Sola Olabanjo, Sewedo and Sewenu Balogun for their support I acknowledge the support provided by the following friends, Mr. Solomon Hunwi, Mr. Izang, my roommate. Toriola Yusuf, Samuel Adanu, Tosin Agborume and Ben Adagba. Mr. Mumuni Adejumo who took his time to work on the statistical aspects of the research, I am highly indebted to him, I registered my gratitude to Mr. Lanre Quadri, for his wonderful secretatiant word processing assistance. I will not fail to thank my dear brothers and sisters, Pastor D.J. Balogun, Taiye Balogun, Ayodele Balogun and Kehinde Ezun. Theophilus Semako Balogun ## **ACKNOWLEDGEMENT** The pathway to success is always known to be "rugged" it is how one sees or looks upon life that makes the difference. I give glory to God Almighty for Ilis grace and journey mercies over me. I am much grateful to my supervisor. Dr. Frederick Oshiname, who despite his busy schedule, had time to look through my work and made useful amendments, offered constructive suggestions and provided support and excellent goal oriented assistance to make this research a reality. an immensely grateful to Dr E.O. Oyewole my "mentor" for his encouragement. constant monitoring and advise which assisted me in the completion of the research work. I cannot but remember my other lecturers, Dr. Femi Dipcolu and Dr M. A. Titiloye for their encouragement. My gratitude goes to all members of the MPH (Health Education & Promotion) class of 2011/2012 set. The commitment and dynamism among this set cannot be over-estimated, I appreciate them all. I also appreciate the support and words of encouragement I received from all my colleagues at College of Health Technology, Yaba, Lagos. My immense gratitude goes to my dear wife Mrs. Oluburmi Julianah Balogun who often reminded me that it is better to do something imperfectly than not doing anything at all. I thank her for being there for me. I also say a big thank you to my children: Dr. Senami Balogun, Ayodeji Batogun, Sola Olabanjo, Sewedo and Sewenu Balogun for their support. I acknowledge the support provided by the following friends, Mr. Solomon Hunwi, Mr. Izang, my roommate, Toriola Yusuf, Samuel Adanu, Tosin Agborume and Ben Adagba. Mr. Mununi Adejumo who took his time to work on the statistical aspects of the research, I am highly indebted to him. I registered my gratitude to Mr. Lance Quadri. for his wonderful secretatian word processing assistance. I will not fail to thank my dear brothers and sisters, l'astor D.J. Balogun, Taiye Balogun, Ayodele Balogun and Kehinde Ezun. Theophilus Semako Bulogun ## ABSTRACT Malaria remains a major public health problem among Pregnant Women (PW) in Suh-Sahara Africa. Prevention of the disease will reduce the disease burden with improved quality of life. Insecticide Treated Net (ITN) has been successfully used in homes to prevent mosquito bite which leads to malaria. However, its uptake by pregnant women will depend on their knowledge of malaria and perception of efficacy of ITN to prevent the illness. This study was therefore, designed to investigate malaria related knowledge and ITN use among PW in Badagry Local Government Area (LGA), Lagos State, Nigeria The study was a descriptive cross-sectional survey, which involved the use of a two-stage sampling technique to select 412 PW attending Primary Health Care Facilities (PIICF) in the LGA. All the 11 PHCF in the LGA, which provide ANC services were purposively selected. Proportionate method was then used to determine the number of respondents selected from the facilities based on ratio of patient load. Systematic random sampling was used to select consenting respondents in each facility using registers of clinic attendees as sampling frames. Data were collected using a validated semi-structured interviewer-administered questionnaire. The content of the instrument included questions on respondents' socio- demographic characteristics, 23-point malaria and ITN knowledge scale, ITN use, ITN-related perception and malaria illness experiences. Knowledge scores ≤12 and >12 were categorized as poor and good, respectively. Descriptive statistics and students'1-test were used for data analysis at a 0.05. Respondents' age was 29.3±5.0 years, 95.1% were married and 41.9% had tertiary education. Respondents knowledge of malaria and ITN was 10.2±2.9 and 78.6% had poor knowledge. Only 3.3% could correctly list plasmodium as the causative agent of malaria. The correctly mentioned consequences of malaria in pregnancy included low birth weight (82.0%), abortion (50.1%), and anaemia (17.7%). Malaria was perceived by 85.4% to be a serious illness, while "agbo" (an herbal concoction) was perceived by 11.7% PW to be a better medication to prevent malaria compared to ITN. Some (10.4%) perceived ITN to have a chocking effect. Majority (81.8%) owned ITN at the time of the survey. However, regular ITN users consituted 56.6%, while 53.9% used it during the night preceding the study. Majority (76.0%) experienced malaria at least once during the current pregnancy. Knowledgerscoppengages with no formal education was with formal education. Knowledge score of respondents who owned ITN (11.1 \pm 3.0) was significantly higher than the score (9.9 \pm 3.4) obtained by those who had none. Knowledge of malaria and uptakeof Insecticide treated nets among the pregnant women in Badagry were poor. The main factor which influenced the use of insecticide treated net among them was ownership of insecticide treated net. Public enlightenment, clinic based patient education, availability of nets to pregnant women and counseling services are recommended to tackle these challenges. Keywords: Malaria in pregnancy. Malaria- related knowledge, Insecticide-treated net. Perceived malaria vulnerability Word count: 47-1 with formal education. Knowledge score of respondents who owned ITN (11.1 \pm 3.0) was significantly higher than the score (9.9 \pm 3.4) obtained by those who had none. Knowledge of malana and uptakeof Insecticide treated nets among the pregnant women in Badagy were poor. The main factor which influenced the use of insecticide treated net among them was ownership of insecticide treated net. Public enlightenment, clinic based patient education, availability of nets to pregnant women and counseling services are recommended to tackle these challenges. Keywords: Malatia in pregnancy, Malaria- related knowledge, Insecticide-treated net, Perceived malaria vulnerability Word count:474 ## CERTIFICATION I certify that this project was carried out by BALOGUN. Theophilus Semako in the Department of Health Promotion and Education, Faculty of Public Health. College of Medicine. University of Ibadan under my supervision. SUPPERVISOR Dr. Frederick O. Ushiname MPH (Ibadan), M.A. (CWRU, Cleveland), Ph.D. (Ibadan) Department of Health Promotion and Education, Faculty of Public Health, College of Medicine, University of Ibadan. Ibadan, Nigeria. # TABLE OF CONTENT | | age | |--|----------| | Title | | | Dedication | i | | Acknowledgement | ii | | Abstract | V | | Certification | า | | Table of content | VII. | | List of Tables | X | | List of Figures | xii | | List of Abbreviations | XIII | | Operational Delinition | XIV | | | | | CHAPTER ONE: INTRODUCTION | 1 | | Statement of the problem | 3 | | Justification of the study | 3 | | Research Questions | 4 | | Broad objectives | 4 | | Specific objectives | 4 | | CHAPTER TWO: LITERATURE REVIEW | 5 | | 2.1 Epidemiology of malaria | 5 | | 2.2 Treatment of malaria | 10 | | 2.3 Programmes on malaria control/prevention programmes | 11 | | 2.4 Pregnancy and malaria and associated burden | 13 | | 2.5 Pregnant womens knowledge related to malaria and insecticide treated
net | 22 | | 2.6 Pregnant women perception of malaria and insecticide treated net | 24 | | 2.7 Ownership and use of insecticide treated net among pregnant women | 25 | | 2.8 Factors that influence use of insecticide treated net among pregnant women | 30 | | (Facilitating and Barner factors) | | | Conceptual framework | 33 | | | | | CHAPTER THREE: METHODOLOGY | 36 | |---|----| | Study Design and scope | 36 | | Description of the study area | 36 | | Study variables | 37 | | Sample size determination | 39 | | Sampling procedure | 39 | | Instrument for data collection | 40 | | Validity | 40 | | Reliability of the study instrument | 40 | | Training of Research Assistants (RA) | 41 | | Data collection process | 41 | | Data analysis | 41 | | Ethical consideration | 41 | | Limitation of the Study | 42 | | | | | CHAPTER FOUR: RESULTS | 43 | | 4.1. Awareness and Knowledge Relating to Malaria and Insecticide Treated Nets | 43 | | 4.2. Comparison of respondents mean knowledge scores | 53 | | 4.3. Respondents' perception relating to insecticide treated net | 60 | | 4.4 Maloria-related Experiences | 63 | | 4.5. Ownership and Use of Insecticide Treated Net among Respondents | 68 | | 4.6. Barrier Factors Relating to the Use of Insecticide Treated Net among | | | Respondents | 72 | | | | | CHAPTER FIVE: DISCUSSIONCONCLUSIONS AND RECOMMENDATIONS | 75 | | 5.1 Awareness and Knowledge Relating to Malaria and Insecticide Treated Nets | 75 | | 5.2 Respondents' perception | 77 | | 5.3 Malaria Related Experiences | 78 | | 5.4 Ownership and Use of Insecticide Treated Nets among Respondents | 79 | | 5.5 Factors Relating to the Use of Insecticide Treated Net among Respondents | 79 | | 5.6 Implications for Health Promotion and Education | 80 | | 5.7 Conclusion | 81 | | 5.8 Recommendations | 82 | | 5.9 References | 83 | AFRICAN DIGITAL HEALTH REPOSITORY PROJECT # LIST OF TABLES | Table3.1: | Health facilities in Badagry Local Government Area | 38 | |--------------------|--|----| | Table 3.2: | Shows total weekly attendance at each PLIC and the total sample | | | | size of each PHC | 42 | | Table 4.1: | Awareness and Knowledge Relating to Malaria and Insecticide | | | | Treated Nets: Cause and Symptoms | 45 | | Table 4.2: | Respondents' knowledge on possible health effects of untreated | | | | malaria aniong pregnant women | 46 | | Table 4.3: | Respondents' knowledge relating to child transmission of malaria | | | | in-utero and group of people that are most vulnerable | 48 | | Table 4.4: | Respondents' awareness relating to insecticide treated nets and | | | | long lasting insecticide treated nets | 49 | | Table 4.5: | Respondents' knowledge relating to the benefits of Insecticide | | | | Treated Net | 50 | | Table 4.6 ; | Respondents' Knowledge Relating to the Consequences of Malaria | 51 | | Table 4.7: | Comparison of respondents' mean knowledge scores by age | 54 | | Table 4.8: | Comparison of respondents' mean knowledge scores by marital status | 55 | | Table 4.9: | Comparison of respondents' mean knowledge scores by | | | | level of education | 56 | | Table 4.10: | Comparison of respondents' mean knowledge scores by receipt | | | | of formal and Non-formal education | 57 | | Table 4.11: | Comparison of respondents' mean knowledge scores by | | | | ownership of ITN | 58 | | Table 4.12: | Comparison of respondents' mean by ever use of an IN | 59 | | Table 4.13: | Respondents' perception relating to insecticide treated net | 61 | | Table 4.14: | Respondents' Perception relating to Seriousness and | | | | Yulnerability to Malaria | 62 | | Table 4.15: | Malaria Preventive Practices among Respondents | 65 | | Table 4.16 | Awareness of malaria prevention methods among respondents | 66 | | Table 4.17 | Respondents' sources of information on malaria preventive | | | | actions for pregraphical Health Repository Project | 67 | | Table 4.18: | Ownership and Use of Insecticide Treated Net among Respondents | 69 | |-------------|--|----| | Table 4.19: | Sources of Insecticide Treated Net ever owned by respondents | 70 | | Table 4.20: | Practices relating to use of Insecticide Treated Nets among | | | | Respondents | 71 | | Table 4.21: | Barrier Factors Relating to the Use of Insecticide Treated | | | | Net among Respondents | 73 | | Table 4.22: | Facilitating factors relating to the use of insecticide treated net listed | | | | by respondents | 74 | | | | | | | | | | | | | # LIST OF FIGURE | Figure 2.1 Health Belief Model | 35 | |---|----| | Figure 4.2:Possible effects of malaria on unborn children | 47 | | Figure 4.3 Categories of knowledge scores among the respondents | 52 | | Figure 4.4 Malaria related experiences | 64 | | | | | | | # LIST OF ABBREVIATIONS IPT - Internittent Preventive Therapy ITN Insecticide Treated Net BLGA Badagry Local Government Area SMCP - State Malaria Control Programune MDG - Millennium Development Goal WIIO World Health Organisation ANC - Antenatal Clinic PIIC - Primary Health Centre RBM - Roll Back Malaria IVM - Integrated Vector Management VBD - Vector Borne Diseases ITC - Insecticide Treated Curtains ITS - Insecticide Treated Screening MOH - Ministry of Health PIICF - Primary Ilealth Care Facilities NMCP - National Malaria Control Programme UNICEI United Nations Children Emergency Fund HBM - Health Believe Model PW - Pregnant Women NDHS - National Demographic Health System FMOII Federal Ministry of Health NFLV - Nigerian French Language Village ASCON - Administrative Staff College of Nigeria NPC - National Population Commission IRS - Indoor Residual Spray AFRICAN DIGITAL HEALTH REPOSITORY PROJECT ## OPERATIONAL DEFINITIONS OF TERMS Pregnant Women: This refers to women between 18-45 years carrying unborn foetus at any gestational age. Knowledge: Is the ability of the pregnant women to have understanding about detailed information on malaria and insecticide treated net Health Care Facility: This refers to a place where skilled attandants and professional medical personnel provide medical and related services aimed at maintaining good health. Maternal Monality: This is the death of a women between 18 – 45 years in pregnancy or within 42 days after termination of pregnancy. Morbidity Rate: This is the sickness rate of a woman in a gestational period. Ante Natal Care: This is a service or care given to mother and partner during pregnancy. Perception: This refers to conscious understanding relating to malaria and ITN in the study. Practices: In this study, it refers to an activity to improve skill. # CHAPTER ONE ## INTRODUCTION # Background of the Study Malaria in pregnancy leads to a variety of adverse health effects in pregnant women; this include the risk of adverse pregnancy outcome for the mother (WHO, 2012). It also adversely affects the foctus and the new born (Gross, Alba, Schellenberg, Kessy, Mayumana and Obirist; 2011). The specific adverse effects of malaria include maternal anaemia, still birthlow weight and intra-uterine growth restriction (Desai, Kuile, Koster, Ma Gready, Asamba, Brabil, and Newman 2011). It has been revealed that in Nigeria, malaria is responsible for 30% childhood mortality, 11% maternal mortality and over 60% out-patient visits to bealth facilities (FMOH/NMCP, 2012). The World Health Organizationhas recommended the use of Insecticide Treated Nets (ITNs) as a measure for reducing the adverse effects of malaria in pregnancy (WHO, 2012) while the Abuja declaration of African Heads of states in 2000 aimed at providing at least 80% of pregnant women with ITNs by the year 2005. It has been reported that in Nigeria 5% of pregnant women were using ITN as at 2009 (NPC, 2009). The factors which indirectly affect ITN use include, poor knowledge of the technology (Singh, Desai and Eiselle 2013), poor knowledge of the link between malaria and mosquito net and poor knowledge of its use (Fuge, Samuel, Ayanto, Fischa, and Gurmamo 2015). Insecticide treated net is a key prevention tool that has been found to reduce tradaria cases and malaria induced death among pregnant women. Household ownership of insecticide treated nets has increased greatly however there are some factors that influence its maximum utilization (Fuge, Samuel, Ayanto, Fischa and Gurmamo 2015). In Lagos state, the main delivery system of ITN is through Ante – Natalcare (ANC) lacilities; pregnant women who attend ANC facilities; are given nets free of charge. However free distribution of nets may not translate to use. Over 4.2 million ITN were distributed in Lago. State in May 2011. Out of this, Badagry Local Government Area had over 35p. 000 insecticide treated nets coverage of about 99.4% was recorded (SMCP, 2012), in the State. The ITN use promotion targeted household all over the LGA. The pattern of the distributed nets in Badagry LOA are yet to be systematically investigated. Many reasons are AFRICAN DIGITAL HEALTH REPOSITORY PROJECT. often given by people including pregnant women for non-use or poor use of ITNs. These reasons include fear of sleeping under it (Pulford, Hatzel, Bryant, Siba and Mueller, 2011). the heat it generates (Pulford et al; 2011), the inconveniences associated with the use of ITN (Kareera, 2015) and the skill for hanging an Insecticide Treated Net (Pulford et al 2012); (Laura, Sangare, Weiss, Paula, Brentlinger, Barbra and Richardson, 2012), There is a recognized need to scale up coverage of ITNs and other proven effective intervention in order to reach the Millennium Development Goal (MDG)of reducing child mortality by 50% by 2015 and beyond (Bryce, Lines and Rolland 2003). A recent review of community acceptance of bed nets has shown that various factors influence the use of bed nets and these include cultural,
behavioral and demographic factors, accessibility, gender relations and seasonality of malaria (Lukman, Omokanye, Rakiya, Abdul, and Olatinwo, 2012). The other specific factors include education, household, income, socio-economic status, malaria and ITN knowledge and urban residence The use of ITNs is very effective in the control of malaria in pregnancy, and it is estimated to be twice as effective as the untreated nets (Ugwu et al; 2015). Some researchers have noted that women who used ITNs had significantly fewer deliveryproblems associated with malariaand babies with higher mean birth weight than women who did not use 17Ns. Despite the associated benefits of ITN use, same community practices remain significant obstacles to achieving optimal net coverage. For example, a study in Kenya reviewed that the youngest children in a household were given the lowest priority for bed net use despite being a higher risk population. (Widman, 2009). In Nigeria, a study revealed that female education has been identified as an important child survival strategy and is probably the single most important factor that determines the acceptance and utilization of health practices in low resource settings (Runsewy, Iyaniwura, and Sotimehin, 2012), including the adoption of technologies such ITN. Previous studies conducted in Lagos State by National Malaria Control Programore, Abuja relating to ITN use among pregnant women, showed that despite the free distribution of ITNs in the state in 2011, the utilization rate was still 37% among pregnant women (FMOHVMCP, 2015). The adoption of an innovation is influenced by several factors including knowledge, perception and previous experiences. This also applies to the adoption and sustained use of ITNs, However, the extent to which these predisposing factors influence the utilization of ITN use are yet to be well investigated in Badagry Local Government Area. The need to do this constitutes the major focus of this study. ## Statement of the Problem Malaria is a major problem in the tropical world including Nigeria which is responsible for many cases of mortality and morbidity among people of different socio - economic classes. It accounts for 40% of public health problems, 30 – 50% in patient admission and up to 50% of out patients visits in areas with high malaria transmission like Nigeria (FMOH / NMCP 2010). In the absence of an effective vaccine for preventing malaria in pregnancy, prevention with the use of ITN remains the most viable strategy for protecting pregnant women against the disease. A number of studies conducted in Nigeria among pregnant women attending primary health centres have shown that some misconceptions and inappropriate perceptions exist among pregnant women relating to insecticide treated net use (Runsewe et al; 2012) and (Ugwv. Eze Chukwu, Obi, Ugwv and Okeke, 2015); this factors could be due to inadequate knowledge of ITN. The pattern of ITN use among pregnant women can be determined from two main settings: Many pregnant women patronize Primary Health Centres in Badagry LGA because these facilities constitute the main first point of call and easy access to ANC services. They also constitute a more appropriate setting for studing pregnant women as a captive audience. It is thus easier to reach more pregnant women to study as a captive audience the communitythey live in and the primary health care facilities which they use. In Badagy LGAs, the knowledge, perception, ownership and utilization of ITN among ANC attendees are yet to be fully investigated. This study was, therefore designed to focus on the utilization of ITN among pregnant women attending PHCs in Badagay Local Government Area, Lagos State Nigeria. #### Justification For over a decade, material morbidity and mortality have been of concern worldwide especially in the developing world. Through the Roll Back malaria initiative, malaria prevention is fast taking the center stage in most African countries and one of the suggested interventions is the use of Insecticide Treated Net.NMCP 1998. It has been reported that till date over sixteen million Insecticide Treated Net have been deployed/distributed in Nigeria (WHO 2001). However, one of the challenges still remains the very low level of use of the nets in the country. In order to tackle this problem 31 African Ileads of Statesresolved at the Abuja Roll Back Malaria Submit to provide effective malaria intervention to 60% of women by the year 2005. AFRICAN DIGITAL HEALTH REPOSITORY PROJECT One of the identified interventions to limit the adverse effects of malaria in pregnancy is the use of insecticide treated net (ITN) by pregnant women. The efficiency of ITN can only be fully realized if pregnant women comply with its use. However, there is death of information relating to the use of 17N. The use of insecticide treated net among pregnant women therefore needs to be explored so as to indentify factors inhibiting the utilization of 17N. The result from the study have potential for serving as base line information for the design of appropriate health education interventions and at promoting 17N use among pregnant women. The result can also be used for formulating polices relating to the promotion of uptake of 17N among study population. ## Research Questions The research questions framed to guide the study are as follow: - 1. What is the level of awareness and knowledge of pregnant women relating to makeria and insecticide treated nets? - 2. What are the perceptions of pregnant women relating to insecticide treated nets? - 3. What is the ITN ownership status among the pregnant women? - 4. What is the pattern of use of insecticide treated net among pregrant women? - 5. What are the barriers and facilitating factors relating to ITN use among pregnant women? # Broad Objective The broad objective of the study was to investigate the knowledge, perception, ownership and factors that influence the utilization of insecticide treated net among pregnant women who arrend PHC facilities in Badagay LGA. # The specific objectives were to: - 1. Assess the level of awareness and knowledge of pregnant women relating to malaria and insecticide treated nets. - 2. Assess the perception of pregnant women relating to insecticide treated nets. - 3. Determine the level of ownership of insecticide treated net among the pregnant women. - 4. Determine respondents' pattern of use of insecticide treated nets among the programt women - 5. Identify the barriers and facilitating factors experienced among program women relatingto use of insecticide treated nets. ## CHAPTER TWO ## LITERATURE REVIEW # 2.1 Epidemiology of Malaria Malaria in humans is caused by five Plasmodium parasites: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlest. The current distribution of human-pathogenic Plasmodium species shows preponderance of Plasmodium falciparum in tropical Africa, while Plasmodium vivax prevails over Plasmodium falciparum in South America. Both Plasmodium falciparum and Plasmodium vivax are prevalent in south-eastern Asia and western Pacific. Although Plasmodium malariae may occur in all malarious areas, its prevalence is generally low. In tropical Africa, Plasmodium falciparum and Plasmodium malariae co-infection is sometimes encountered. Plasmodium avale is widespread principally in tropical Africa whereas Plasmodium knowlesi infection occurs only in certain forested areas of South-East Asia. (Mandal, 2014) Malaria burden is hurd to estimate, particularly in low income countries where data collection and reporting quality is poor (Anstey et al; 2009). Incomplete and discontinuous reports from single health facilities may alter final global malaria prevalence. Malaria cases are often under-diagnosed in hyper endemic countries, where mild symptoms of chronic malaria may possibly lead to misdiagnosis. On the contrary, overdiagnosis may also occur. In fact, not all reported malaria cases are confirmed by microscopy or others assay, such as rapid diagnostic tests (RDTs). Furthermore, in hyper endemic areas febrile illnesses from different causes might be misdiagnosed with malaria (Anstey et al; 2009). The WHO guidelines recommends that microscopy or RDTs should be used to confirm all malaria cases. (Anstey et al; 2009) Another issue is the lack of population denominator that makes the real incidence of malaria difficult to assess. Data emerging from WHO reports just estimate malaria incidence and mortality, reporting malarial cases and malarial death from the different WHO regions, collected by Ministries of Health of different countries. These data do not reflect the real incidence in the general population. Nevertheless, they are good indicators to assess malarial control programmes and to estimate the impact of malaria infection in health systems. The term endemicity is a proxy to indicate disease prevalence (Herrera et al; 2007). Areas presenting the same level of endemicity often have similar characteristics of disease distribution, guiding malaria experts to design, implement and monitor control and prevention activities (Herrera et al; 2007). Malaria endemicity is a very complex issue, that is influenced by factors related to the manhost interactions (agricultural activities, noctumal activities, migration movements, wars, limited resources). to the parasite (different species, sporogonic cycle length, drug susceptibility), to the vector (density, larvae breeding sites, temperature, receptivity, feeding pattern, longevity, insecticide susceptibility) and to the environment (physical – biological – socio-economic). Different methods to classify malaria endemicity in a population exist. These methods includes (i) proportion of individuals in a population with a palpable enlargement of spleen (spleen rate [SR]), (ii) proportion of individuals in a population with a laboratory-confirmed parasite infection (parasite rate [PR]), (iii) number
of infective bites per person (entomological inoculation rate [EIR]) and (iv) number of microscopically confirmed malaria cases detected during one year per unit population (annual parasite incidence [API]) (Wipasa et al; 2002). Proportion of individuals with splenomegaly (SR) in a given population was the first method used to assess malaria endemicity during a malariometric survey in 1848 in India, where spleen dimension was assessed in selected population age groups. Thus, malariometry attention was focused on clinical manifestations of malaria. On the basis of splenomegaly prevalence rates in children from 2 to 9 years old. 4 different endemicity areas can be distinguished: holo-endemic areas, where proportion of people with splenomegaly is above 75%; hyper-endemic areas, where splenomegaly prevalence is between 51 and 75%; meso-endemic areas, with prevalence between 50 and 11%; hypo-endemic areas, where prevalence is below 11% (Wipasa et al. 2002). Parasite rates (PR) assesses the proportion of individuals with microscopically confirmed presence of asexual parasites in peripheral blood. It's a technique that requires expert laboratory technicians and suffers of malaria seasonal variation (Wipasa et al; 2002). Spleen and parasite rate are actually less used, whereas entomological inoculation rate (EIR) and annual parasite incidence (API) are utilized to prepare epidemiologic malaria maps that show malaria distribution in the world. Where data are unavailable, a model is required to predict malaria endemicity (Chelimo et al; 2011). Many recent studies investigated a predictive framework known as model-based geostatistics (MBG) to asses malaria endemicity and the prevalence of other vector-borne and intermediate host borne diseases(Valizomdeh et al; 2013). ## Malaria Endemic Areas Different malaria endemic areas have different epidemiological situations and also the feasible targets may differ. According to WHO, the following terminology should be adopted when referring to malaria endemic status: Malaria control: reducing the malaria disease burden to a level at which it is no longer a public health problem (Michon et al; 2000). Malaria elimination: The interruption of local mosquito-borne malaria transmission; reduction to zero of the incidence of infection caused by human malaria parasites in a defined geographical area as a result of deliberate efforts; continued measures to prevent reestablishment of transmission are required. Malaria eradication: Permanent reduction to zero of the worldwide incidence of infection caused by a particular malaria parasite species. Intervention measures are no longer needed once eradication has been achieved. Most malaria cases and deaths occur in the African Region (Michon et al; 2000). As a consequence of implementation programs, high burden countries of African Region, such as Madagascar, Sao Tome and Principe, Eritrea. Rwanda and Zambia, showed a decrease in malaria cases up to 50% between 2000 and 2009 (Michon et al; 2000). According to (Michon et al; 2000) Rwanda showed a decrease by 74% of confirmed malarial cases between 2005 and 2010 and slide positivity rate decreased from 35% to 9%. Moreover, number of malaria hospital admissions and malaria deaths showed a decrease of 65% and 55% respectively. Zanzibar, belonging to United Republic of Tanzania, showed a dramatic decrease of malaria admissions and deaths due not only to the efficacy of control strategies, but also to favourable geographic position. In low-transmission countries of African Region control strategies have also been performed. As a result of the faithful implementation of these strategies, Algeria is in the malaria elimination phase while Cape verde in pre-elimination phase (Autino et al; 2012). In 15 countries of the WIIO Region of the Americas, where P. vivax is the most prevalent species, reductions of more than 50% in the number of the reported cases were observed. During 2010, malaria transmission occurred in 21 countries, of which 17 are in the control AFRICAN DIGITAL HEALTH REPOSITORY PROJECT stage and 4 are in the pre-elimination stage. Bahamas and Jamaica are in the prevention of reintroduction phase. In Ecuador, malaria cases dropped from 105 000 in 2000 to 4.120 in 2009, a reduction of 96% due to IRS, LLINs distribution, strengthening of malaria diagnosts and treatment and also due to Global Found, UNICEF, USAID and government funds invested in malaria control (Autino et al; 2012). # Plasmodium falciparum Plasmodium falciparum is widespread in nearly all malaria endemic countries (Cheng et al; 2014). A study identified 2.37 billion people at risk of Plasmodium falciparum transmission worldwide, 26% located in the African region and 62% in South East Asian and Western Pacific regions (Cheng et al; 2014). In Africa, many epidemiological studies suggest that Plasmodium falciparum is the most prevalent malarial species. Blood samples were collected between 1998 and 2006 from nine different African countries and analyzed by PCR for the presence of each of the four human malaria parasites (Rhee et al; 2001). Out of 2.588 samples. 1.737 were positive for Plasmodium species and 1.711 (98.5%) were positive for Plasmodium falciparum considering both mono and mixed infection (Rhee et al; 2001). Another study performed in 4 villages in Mulanda sub-county, in eastern Uganda, showed a prevalence of Plasmodium falciparum infection of 94% during rainy season, from July to December, 2002 using thin film diagnosis (Malagua mera et al; 2002). A study performed in metropolitan Lagos, Nigeria, showed a microscopic prevalence of Plasmodium falciparum species of 88.5% in pregnant women attending antenatal care clinic, during one observation year (Zeyrek et al; 2006). # Anopheles Vectors Malaria is transmitted exclusively through the bites of Anopheles mosquitoes. There are 512 Anopheles species recognized worldwide and 50 only provisionally designated and awaiting description (Nebic et al. 2009). Seventy Anopheles species are able to transmit Plasmodium parasite to human hosts (Rhee et al. 2001) Anopheles mosquitoes breed in water and each species has its own breeding preference. Transmission is more intense in places where mosquito lifespan is longer (parasite has time to complete its development inside the mosquito) and where anthropophilic mosquitoes prevail. Forty-one of the 512 Anopheles species are defined by experts "Dominant Vector Species" (DVS). DVS are the most important malarial vector worldwide, providing the majority of human malaria cases. Characteristics of dominant vector species are their propensity for humans feeding, longevity, abundance and elevate vectorial capacity (Riley et al; 1993). ## Economic burden of malaria Along with direct health cost there is a severe economic burden of the disease in terms of lost days of work. In fact malaria is thought to take off 1.3% from the economic growth of some African countries. In some of the most severely affected countries, it accounts for 40% of public health expenditure, 30-50% of inpatient admissions, and 50% of outpatient visits. It affects developing countries in more ways than one including determent of tourism (Rhee et al; 2001). There were an estimated 219 million cases of malaria (154-289 million) and 660 000 deaths (range 610 000-971 000) in 2010. Of total numbers 80% of estimated malaria deaths occur in just 14 countries and approximately 80% of estimated cases occur in 17 countries (WHO, 2015). The Democratic Republic of the Congo and Nigeria account for over 40% of the estimated total of malaria deaths globally. The Democratic Republic of the Congo. India and Nigeria account for 40% of estimated malaria cases. Estimated malarin mortality rates are highest in countries with a lower GNI per capita. Countries with higher proportions of their population living in poverty (less than US\$ 1.25 per person per day) have higher mortality rates from malaria (WIIO, 2015). Of the deaths a large proportion was young children in sub-Saharan Africa. This is the most vulnerable group affected with the condition. In areas with high transmission, the most vulnerable groups are young children. These children are vulnerable because they have not developed enough immunity to malaria yet. Pregnant women are also at risk because their immunity has been decreased by pregnancy (WHO, 2015). Malaria affects mainly poor tropical and subtropical areas of the world. Where the disease is endence it is the leading cause of illness and death (WHO, 2008). Africa has several factors that make it high lisk for malaria. Some of these include very efficient mosquito (Anopheles gambiae) responsible for transmission, predominant parasite species is Plasmodium falciparum that leads to more severe malaria, warm and humid climate that allows transmission to occur year round as well as lack of resources and poor socio- primaquine is both effective in blocking transmission and unlikely to cause serious toxicity in individuals with any of the G6PD-deliciency variants. # 2.3 Malaria Control/Prevention Programmes World Health Organisation is collaborating with the Roll Back N{alaria (RBM) Partnership to support malaria-endemic countries in conducting systematic national malaria programme reviews. World Health Organisation has released a trial edition of a manual to guide the conduct of malaria programme reviews in 2010 - and facilitated reviews in over 25 countries during 2011 and 2012. The lessons learned from these processes are being used to simplify the review process with a view to optimizing resource allocation, effectiveness and costs (WHO, 2012). Malaria programme reviews, abbreviated as MPRs, are periodic, joint evaluations of national control programmes within national strategic planning and programming cycles, to further improve evidence-based, effective and efficient programme management. Malaria programmes reviews are led and owned by endemic countries themselves, and
are built around the principle of capacity-building at country level, allowing national stakeholders to perform an independent self-assessment. There are key objectives which guide comprehensive programme reviews. These include the following: - Review malaria epidemiology and update stratification and mapping; - Review progress towards national, regional and global targets; - Review policy and strategic frameworks for planning, programming, management, implementation and timely reporting; - Review performance of malaria services delivery systems by thematic areas and at different levels of delivery; and - Re-deline the suture policies, strategies and support programme transformation to sustain high program persormance. Sustaioable National Malaria Programme worked with the Nigerian Covernment's National Malaria Himmulion Programme (NMEP) to luminonise donor efforts and funding agencies around agreed national policies and plans for malaria control and elimination (Guerra et al. 2008). Sustainable National Malana Programme has improved national, state and local government level capacity for policy development, planning and coordination, in addition to working with those agencies to improve population coverage of effective measures for the prevention of malaria and access to the population to effective treatment for malaria (Guerra et al. 2008) The main goal of the NMEP is to reduce the malaria bunden to pre-elimination levels and bring malaria-related mortality to zero. The programme worked with the NMEP towards the achievement of its vision of a malaria-free Nigeria and in tandem with its mission to provide equitable, controlensive, cost effective, efficient and quality malaria control services ensuring transparency, accountability, client satisfaction, community ownership and partnership (Guerra et al. 2008). The ninjor national target as outline in the National Malana Strategic Plan (NMSP) 2014-2020 (WHO, 2012) are as follows: - At least 80 percent of targeted populations utilize preventive measures by 2020. - To ensure that all persons with suspected malaria who seek care are tested with RDTs or microscopy by 2020. - All persons with inalario seen in private, public health facilities or community agents receive prompt treatment with an effective anti-malanal drug by 2020. - At least 80 percent of the population practice appropriate malaria prevention and management by 2020. - I'ut in place a system for timely availability of appropriate antimalarial medicanes and commodities required for prevention, diagnosis and treatment of malaria in Nigeria by 2018. - At least 80 percent of health facilities in all LGAs report mutinely on malaria by 2020. progress is measured and evidence is used for programme improvement. To strengthen governance and coordination of all stakeholders for elfective programme implementation towards an 'A' rating by 2017 that is sustained through to 2020 on a standardized scorecard. # 2.4 Pregnancy and molaria and the associated burden Pregnancy is a normal physiological process but presents with physiological and anatomical challenges. This is more so because when a woman becomes pregnant, a lot of changes take place in her. The pregnancy related changes could be accompanied by some early symptoms which include nausea, vomiting, chest burn or stomach ache and frequent urination (Fuge et al; 2015). Health challenges which may be associated with pregnancy may also include swelling feet, piles, low back pain, malnutrition, anaemia and constipation. Some of these symptoms are similar to the symptoms of malaria, Hence, most women especially those pregnant for the first time, find it difficult to differentiate early pregnancy symptoms from malaria (Fuge et al; 2015). The consequences of malaria in pregnancy include anaemia, stillbirth and low birth weight (Ejik et al; 2013). Anaemia in pregnancy can be defined as low haemoglobin level in pregnancy while stillbirth is the delivery which occurs after viability of the baby at 24 weeks. Low birth weight is a birth weight which is less than 2.5kg. (Widman et al. 2012). During pregnancy, a woman's immunity become lower as a result of this, she becomes vulnerable to infection such as malaria (Ejik et al. 2012). In view of the lowered immunity of woman during pregnancy and the fact that malaria in pregnancy compromises the health of both expectant mother and the foctus, it is necessary to embark on measures aimed at preventing pregnant women from malaria infection. It has been reported that women in their first and second pregnancy are particularly at high risk of malaria (Nwandama et al; 2015). Research findings have shown that babies born to mothers with malaria-infected placentas are mostly at high risk of low-birth weight (Runsewe Abiodun et al; 2012), dehydration, seizure, and rupturing of the spleen. High malaria parasite infection density of the placenta in association with the membrane may cause the consumption of the glucose and oxygen that would have been transported to the foctus thus leading to intrauterine retardation and premature delivery (Runsewe Abiodun et al; 2012). In Nigeria, malaria during pregnancy contributes to maternal mortality and infant mortality (WHO, 2013). Malaria directly accounts for about 11% maternal deaths and a leading cause of anaemia in pregnancy (Ugwa et al; 2015). Placenta infection by malaria parasites can comprontise foetal nutrition which can in turn lead to intra-uterine foetal growth retardation and low birth weight (Ugwa et al; 2015). This explains why national efforts to reduce the high maternal and infant mortality place high premium on effective control of malaria in pregnancy (Omotosho et al; 2009). In line with the seriousness of malaria in pregnancy and its health importance, the Nigerian National Strategy for malaria control in pregnancy focuses on the use of three strategies: providing prompt access to effective treatment, use of ITNs and Intermittent Preventive Treatments (IPTs) with Sulfadoxine-Pyrimethamine (Nwandama et al; 2015). Consistent use of ITNs in pregnancy has been shown by sevemi randomized controlled trials to produce beneficial maternal and infant outcomes (Singh et al; 2013, Ugwa et al; 2015). Nwandama et al; 2015). Nigeria has promoted ITN use in pregnancy along with other evidence-based interventions for malaria control since the Abuja Malaria Summit which tank place in 2005. However, the level of ITN utilization by pregnant women and other vulnerable populations have remained low. According to Ankomah et al. (2011), the results of the most recent National Demographic and Health Survey conducted in the country has revealed utilization rate below 10%. A recent synthesis of data from national malaria control programmes from NMCP has also shown that the levels of utilization of ITN by pregnant women in many sub-Saharan African countries remain for below national and global strategic targets. The use of 17Ns in Nigeria is very low even by sub-Saharan African standards. The proportion of children under 5 years in Nigeria who slept under ITNs increased only minimally from 3.3% in 2004 to 6% in 2008. There have been recent efforts to increase access to ITNs through mass distribution programmes but there are concerns that 17N utilization may still lag behind access as has been severally reported. Several community level studies have identified poor perceptions of, and low use of ITNs in several African countries including Ehena, Tanzania and Nigeria. There is the need to study factors capable of influencing consistent utilization of ITN especially by vulnerable populations like under-five (5) children and pregnant women in various schlings. The studies on bed nets utilization in Nigeria are mostly limited to caregivers of children below live years of age and pregnant women have often not been the focus of study (Awosan et al; 2013, Omotosho et al; 2009, Runsewe et al; 2012). Nigerian studies that have specifically focused on ITN use by pregnant women have been mostly facility-based and involved relatively small samples. A notable example is the survey conducted in Oshogbo in southwest Nigeria which reported low ITN use in a sample of 328 pregnant women but did not explore possible determinants. (Aukomah et al; 2011). The World Health Organization's world malaria report shows the enormity of the burden of malaria, with 216 million cases and 655, 000 deaths attributable to the mosquito-transmitted parasite in 2010 alone (WHO, 2011). The burden is largely borne by Africa where 91% of deaths occurred, with pregnant women and children under five years of age most at risk of infection and adverse outcomes. (Megha Singh et al; 2013). Each year, an estimated 25million pregnancies in Sub-Saharan Africa are at risk of malaria. The associated adverse consequences can be serious for both mother and foetus in terms of morbidity and mortality (Singh et al; 2013). The sequelacof malaria in pregnancy include maternal anacmia, stillbirths, low birth weight and intra-uterine growth restrictions (Desai M et al; 2007). The main malaria prevention strategies during pregnancy include the use of Intermittent Preventive Treatment (IPT) with anti-malaria medications, as well as the regular and timely use of Insecticide Treated Nets (ITN). The WHO and Roll Back Malaria (RBM) partnership now recommend that distribution of ITNs be free or heavily subsidized to achieve greater equity of coverage, and that a variety of distribution systems be used to achieve universal access, including targeted campaigns to deliver nets to most-at-risk populations, which include pregnant women and children under five years of age. The investment into this simple yet effective intervention has been substantial. In 2010, there were enough ITNs, primarily ITN, procured on the African continent to cover 73% of the at-risk population, yet achieving equitable distribution and providing ongoing supply remain a challenge (WHO, 2011). The
evidence for the efficacy of ITNs in preventing malaria infection and its consequences in pregnancy is strong, as reported in a Cochnane review in 2009, and in a more recent neta-analysis, which examined malaria prevention in pregnancy datasets from different African nations. The evidence showed a strong correlation between the use of ITNs and reduction in stillbirths, improvements in birth weights of babies and a reduction in the prevalence of parasitacmia and anaemia in pregnant women. A communal protective effect of ITNs and reduction in overall vector density has also been observed in some settings. (Killeen, 2011). Despite the wide-spread roll out of policies, and substantial financial investments in ITN distribution, coverage remains suboptimal in many regions particularly with respect to pregnant women. (Magha Singh et al; 2013). The vast majority of malaria deaths occur in Africa, where malaria also presents major obstacles to social and economic development. Malaria has been estimated to cost Africa more than 12 billion US dollars every year (Akande et al: 2005). There are at least 300million acute cases of malaria each year globally, resulting in more than a million deaths. About 90% of these deaths occurs in Africa and mostly in young children. Malaria is Africa's leading cause of under live mortality and constitutes 10% of the continent's overall disease burden. Malaria accounts for 40% of public health expenditure, 30-50% of in-patient admission and up to 50% of outpatient visits in areas with high malaria transmission like Nigeria. In Nigeria, malaria has remained a major contributor to high morbidity and mortality accounting for 25% of infant and 30% childhood mortality and it is associated with 11% maternal mortality. It is estimated that 50% of the population could have at least one episode of malaria each year (WHO, 2007). With a total population of 120 million, this translates to 60million people suffering from attacks of malaria yearly. It is estimated that children under the age of 5 years have 2 to 4 attacks every year, while prevalence rate among pregnant women is 47.6% (Omotosho et al; 2009). This makes malaria the most deadly cause of deaths and disability in children under five in the country. Among pregnant women, malaria is responsible for more than one out of every ten deaths and accounts for a considerable population of low birth weight babies born by these mothers. One of the major breakthroughs in the recent years is the realization that mosquito net treated with insecticide gives a much higher degree of protection against malaria. When properly used, insecticides treated net can reduce malaria transmission by at least 60% and child deaths by 20%, (WHO/UNICEF, 2003) Malaria in pregnancy contributes to significant prenatal morbidity and mortality. As funding increases to combat both malaria and maternal mortality, understanding and how malaria specifically affects pregnant women is crucial in our effects to reduce maternal and prenatal deaths and curb the spread of this preventable infectious disease (WHO, 2012). Pregnant women remain the main vulnerable group to malaria infection (particularly falciparum infection) among the adult population. The infection is mainly responsible for anaemia during pregnancy and delivery of low-birth weight babics. To reduce the burden of malaria in pregnancy, the Ministry of Health in Lagos State in accordance with Abuja declaration of Africa Heads of States (April, 2000) advocated for the use of insecticide treated nets (ITMs) by pregnant women, especially in epidentic pronearces. Pregnant women ure particularly vulnerable to malaria as pregnancy reduces a woman's immunity to malaria, naking her more susceptible to malaria infection and increasing the risk of illness, severe anaemia and death. For the unborn child, maternal malaria increases the risk of spontaneous abortion, still birth, premnture delivery and low birth weight. In areas of Africa with stable malaria transmission, plasmodium falciparum infection during pregnancy is estimated to cause as many as 10.000 nuaternal denths each year, 8 to 14% low birth weight babies and 3 to 8% of all infants deaths (A wosan, et al; 2013). Transmission of malaria disease is very high in Nigeria with an annual incidence of 13.913 per 100,000 populations (WHO, 2013). It is the leading cause of death in children aged under 5 years accounting for 20% of deaths among this group, closely followed by pneumonia and diarrhen diseases that accounted for 17 and 11% of deaths respectively. Among adults, it is the second leading cause of mortality with a cause specific mortality rate of 131 deaths per 100,000 populations compared to 13 deaths per 100,000 population from (IIIV/AIDS) (WHO ,2013). In the absence of effective vaccines for malaria prevention and development of unacceptable levels of resistance to one drug after another by the malaria parasite coupled with the development of resistance to insecticides by mosquitoes that transmit the disease; prevention of mosquitoes bite through the use of ITNs remains very important strategy for malaria control (Avvosan et al; 2013). Constant use of malaria preventive measures during pregnancy in Nigeria has been found to be low despite the burden of the disease in the country (NPC Marro; 2009). Review on community acceptance of bed nets in other places has shown that various factors influence the use of bed nets; these including, cultural, behavioral and demographic factors, ethnicity, accessibility, gender relations and seasonality of maluria (Heggen et al; 2003). Several key assumptions about deployment (or hanging) and use of ITNs by those who own nets underline the recent and rapid distribution of ITNs in Africa. The intervention was assumed to be a known and popular one, so that fast and near universal uptake would arise because (1) the intervention is known to work (protect from malaria) (2) ITNs are virtually side-effect free (3) ITNs are relatively cheap/free (4) ITNs are easy to use (i.e. to have and to sleep under and (5) ITNs not only protect against disease but also provide relief from nulsance-biting mosquitoes, (Macintyre et al. 2011). To benefit from ITNs for prevention of malaria at either the individuals or the continually level requires not only household related to the uptake of I'Ns use is occurring, it is not yet universal (Haggen et al; 2003). According to (Macintyre et al;2011) 13 of the 35 highest burden countries reported at least 50% of households in malaria endentic areas owned an 11%, although there is evidence that ownership does not translate into use at the same time. According to WHO (WHO. 2008), many people who received ITNs did not sleep under them, resold them, reduced their efficiency through inappropriate washing practices or failed to replace them when they become damaged or tom. There are few data to back these statements, this question of non-use continues to challenge malaria practitioners in Africa (Macintyre et al; 2011). Recent analysis according to (Macintyre et al; 2011) of national data of ITN use found that intra-household access to ITNs (i.e. ITN to occupant ratio) was one of the main drivers for ITN use, and that the lower the rate the higher the non-use among occupants (Eisele et al; 2009). Other than ownership, primary barriers to ITN use include; insufficient knowledge of uses or the link between mosquito bites and malaria; tack of knowledge of ITN use as a preventive measure against malaria; and tack of knowledge as to who should be the main users of nets. Some studies also reports poverty as a barrier to use, in that poor households have immediate needs including food, water and medical care and therefore sell nets to meet their basic needs. (Macintyre et al; 2011).Other believe recent illness or death may increase usage and proximity of a household to a health service delivery point may increase the likelihood of having messages related to the importance of net use. There is a perception that the delivery mechanism (i.e. whether the net is free at point of access or not, or where the net comes from is important to acceptance and use of an item in the household (Macintyre et al; 2011). The sources of ITN (e.g. Ministry of Health, the market, a non-governmental organization c.t.c.) or even the brand of net, may affect the level of trust that the community places in that product. The agent who introduced, the ITN (the community health worker (CHW), a friend, nurse or merchant) may also influence net use (Macintyre et al; 2011). It should be noted that net characteristics as pointed out by previous studies, such as brand, colour, size may also influence uptake and use. Many caretakers support that children get too hot or fear sleeping under the net. There are some evidences that related to the uptake of ITNs use is occurring, it is not yet universal (Haggen et al; 2003). According to (Macintyre et al;2011) 13 of the 35 highest burden countries reported at least 50% of households in malaria endemic areas owned an ITN, although there is evidence that ownership does not translate into use at the same time. According to WHO (WHO, 2008), many people who received HNs did not sleep under them, resold them, reduced their efficiency through inappropriate washing practices or failed to replace them when they become damaged or tom. There are few data to back these statements, this question of non-use continues to challenge malaria practitioners in Africa (Macintyre et al; 2011). Recent analysis according to (Macintyre et al; 2011) of national data of ITN use found that intra-household access to ITNs (i.e. ITN to occupant ratio) was one of the main drivers for ITN use, and that the lower the rate the higher the non-use among occupants (Eisele et al; 2009). Other than ownership, primary barriers to ITN use include; insufficient knowledge of uses or the link between mosquito bites and malaria; lack of knowledge of ITN use as a
preventive measure against malaria; and lack of knowledge as to who should be the main users of nets. Some studies also reports poverty as a batrier to use, in that poor households have immediate needs including food, water and medical care and therefore sell nets to meet their basic needs. (Macintyre et al; 2011). Other believe recent illness or death may increase usage and proximity of a household to a health service delivery point may increase the likelihood of having messages related to the importance of net use. There is a perception that the delivery mechanism (i.e. whether the net is free at point of access or not, or where the net comes from is important to acceptance and use of an item in the household (Macintyre et al; 2011). The sources of ITN (e.g. Ministry of Health, the market, a non-governmental organization e.t.c.) or even the brand of net, may affect the level of trust that the community places in that product. The agent who introduced, the ITN (the community health worker (CHW), a friend, nurse or merchant) may also influence net use (Macintyre et al; 2011). It should be noted that net characteristics as pointed out by previous studies, such as brand, colour, size may also influence uptake and use. Many caretakers support that children get too hot or fear sleeping under the net. There are some evidences that pregnant women, who have to get out of bed frequently in the middle of the night to ease themselves, find hung nets inconvenient. This sense of inconvenience may also affect use by children. If nets become damaged or caretakers think the nets make children hot and disturb their sleep, they may decide to let children sleep without a net. (Kate Macintyre et al; 2011). Pregnant women are more susceptible than the geneml population to malaria: they are more likely to become infected, have a recurrence, develop severe complications and to die of the disease. Malaria contributes very significantly to maternal and foctal mortality. Regardless of symptoms, the presence of plasmodia parasites in a pregnant woman's body will have a negative impact on her own health and that of her foctus. Restricting treatment to symptomatic pregnant women is an inadequate strategy to reduce the morbidity and mortality associated with malaria (NICE CKS, 2012). Subclinical infection is common in areas where natural immunity is high (e.g. Sub-Saharan Africa), whereas, as symptomatic cases are common in areas with low immunity (e.g. the Asia-Pacific region, and South Africa) (WHO 2012). Malaria during pregnancy is different from the disease in the non-pregnant state. The severity of malaria in pregnancy is thought to be due to geneml impaired immunity plus a diminution of acquired immunity to malaria in endemic areas. Placental malaria occurs where plasmodium falciparum infected erythrocytes accumulate in the intervillous space of the placenta but may be rare or absent in the peripheral circulation. Diagnosis by light microscopy of blood films is more difficult (Dhiman, 2012) Treatment can be more difficult due to restrictions on anti-malaria agents. There is frequently a lack of good post-marketing surveillance where these drugs are routinely used in pregnancy. However, data support the safety of artemisinin-combined drugs (ACDs) and their advent had provided a useful therapeutic option. With regard to chemoprophy laxis record. World Health Organisation (WHO) recommendations and a large meta-analysis support the use of intermittent prophylactic treatment during the second and third trimester. (Avery et al: 2012). Producing good estimates of the global burden of malaria is difficult due to poor numerator (number of women affected by malaria in pregnancy) and denomination (population at 115k) data However, globally, 125 million women are at the risk of malaria every year In Sub-Saharan Africa, the area most buildened by malaria, the disease is thought to cause as many as 10,000 cases of malaria related deaths in programmey, mainly due to severe maternal malaria Between 75,000 and 200,000 infants (under the age of 12months) are estimated to die annually as a result of malaria infection during pregnancy Approximately 11% (100,000) of neonatal deaths are due to low birth weight resulting from plasmodium falciparum infection in pregnancy. Use of intermittent preventive treatment in pregnancy and use of nets resulted in an estimated 94,000 newborn deaths being averted between 2009 and 2012 in 25 African countries. If these interventions had been applied to 80% of the at-risk population, it is estimated that 300,000 deaths could have been prevented. Preventing malaria in pregnant women reduces severe maternal anaemia by 38%, reduces low birth weight by 43%, reduces prenatal mortality (deaths of infants within 12months) by 27%. Scaling up coverage and access to preventive measures is clearly the way forward (WHO, 2012). A review of studies carried out in Sub-Saharan Africa between 2000 and 2011 reveal that prevalence of malaria ia pregnant women attending antenatal clinics was 29.5% in East and Southern Africa and 35.1% in West and Central Africa (Dhiman et al. 2012). Preventing and treating malaria in pregnancy can be a key intervention to improving maternal, foetal and child health globally and can also be linked to three of the Millennium Development Goals (MDG-3 Maternal Health, MDG-4 Child Health, MDG-5, Combating Infectious Disease, (Kayentao et al., 2013). Pregnantmothers with non-immunity or low immunity from a low-transmission areas are likely to develop forms of illnesses and complications like, Anaemia, Acute pulmonary oedema; disseminated intravascular copulation and death while common problems for the foctus include, spontaneous abortion, premature delivery, stillbirth intrauterine growth restriction, low birth weight and intra uterine foctal death. Malaria infection during pregnancy is a significant public health problem with substantial risks for the pregnant woman, her foctus, and her new born child, Malaria-associated maternal illness and low birth weight are mostly the result of plasmodium falciparum infection and occurs predominantly in Africa (Dhiman et al; 2012). The symptoms and complications of malaria in pregnancy vary according to malaria transmission intensity in the given geographical area, and the individual's level of acquired plasmodium falciparum infection is usually asymptomatic in pregnancy. Yet, parasites may be present in the placenta and contribute to maternal anaemia even in the absence of documented pempheral parasitaemia. Both maternal aneamia and placental parasitaemia can lead to low birth weight, which is an important contributor to infant mortality. In high transmission settings, the adverse effects of plasmodium falciparam infection in pregnancy are most pronounced for women in their first pregnancies. In low transmission setting, where women of reproductive age have relatively links ocquired immunity to malaria, malaria in pregnancy is associated with aneamia, an increased risk of severe malaria, and it may lead to spontaneous abortion, stillbuth prematurity and low birth. In the United Kingdom, the prevalence of imported malaria in pregnancy is unknown. A review of the burden of malaria in pregnancy estimated that about one in four women in Sub-Saharan Africa in areas of stable transmission had malaria at the time of birth (Dondorp et al: 2007). Malaria in pregnancy is detrimental to the woman and her foctus and collective data demonstrate that the risk of adverse effects from untreated malaria in pregnancy outweigh those of treatment (Jelinek, 2016). The protozoan parasites Plasmodium falipatum, plasmodium vivax, plasmodium malariae and plasmodium ovale (Nosten, et al; 2007) are transmitted by the bite of a sporozoite-bearing female anopheles mosquito. After a period of pre-crythrocyte development in the liver, the blood stage infection, which causes the disease begins. Parasitic invasion of the crythrocyte consume haemoglobin and alters the red cell membrane. This allows plasmodium falciparum infected crythrocytes to stick inside the small blood vessels of brain, kidneys and other affected organs. Plasmodium falciparum causes greater morbidity (maternal and foetal), principally low birth weight, anaemia and mortality than non-falciparum infections (Jelinek, 2016) but there is mounting evidence that plasmodium vivax is not as benign as had been previously thought (Jelinek, 2016). Response to antimalarial treatment is muhifactorial but is associated with the degree of prior immunity acquired from repeated exposures in childhood and the background level of drug resistance. The higher the transmission of malaria, the greater the degree of prior immunity and the more likely the woman will respond favourably to a drug treatment. (Phillip-Howard et al; 2016). million deaths per year (the global fund authors 2009), (WHO web site authors 2009) Sub-Saharan Africa has the largest burden of majaria disease, with over 90% of the world's malaria related deaths occurring in this region. Twenty five million (25,000,000) pregnant women are currently at the risks of malaria, and according to World Health Organization (WHO), malaria accounts for over 10,000 maternal and 200,000 neonatal death per year (WHO, 2009). These figures may under estimate the impact malaria has in maternal morbidity and mortality. A recent study from Mozambique that investigated cause of maternal death via autopsy found that up to 10% of maternal deaths were directly attributed to malarial infection and 13% were secondary to human immunodeficiency virus HIV/AIDS, which can be exneerbated by coexisting malarial infection (Menendez, 2008). This suggests that in parts of the world where malaria is endemic, it may directly contribute to almost 25% of all maternal deaths. Malaria in pregnancy also contributes to significant prenatal and mortality and mobility. Infection is known to cause higher rates of miscarriage,
intrauterine, demise, premature delivery, low birth weight neonates, and neonatal deaths. As funding increases to combat both malaria and maternal mortality, understanding how malaria specifically affects pregnant women is crucial in our efforts to improve maternal and prenatal health and curb the spread of this preventable infectious diseases. # 2.5 Pregnant Womens' Knowledge with Respect to Malario and Insecticide Treated Net. Common principles used to measure knowledge about malaria include questions about transmission and intervention. Gestational malaria is recognized as a leading contributor to the high maternal mortality ratio quoted in the region. The study conducted in Ogun State among pregnant women attending secondary flealth facilities by (Runsewe Abiodun et al;2012) concluded that the low awareness and poor knowledge about insecticide treated net (ITN) among the pregnant women reflect their level of exposure to adequate information and may be continuously sensitized through social marketing, radio, jingles and community participation to ensure acceptance and utilization of the new protective methods. Ilealth eare providers who are the main source of health information to the pregnant women in the various health facilities, may need further training and retraining on malaria control and prevention as it has been seen to be imadequate. In the Tanzania study (Manchent 2012) wide knowledge gap existed between those that had antenatal case (ANC) and those who did not as they are more likely to be more exposed to some information during the usual health promotion activities in the clinic. The educational level of the study participants was found to be significantly associated with awareness and even knowledge. This may also explain the higher level awareness recorded in this study when compared with Onjekwes Net mark survey. Even at the net mark survey still noted Nigeria had the lowest level of awareness in the sub region in 2004. Back 2011 till date the indepth knowledge about ITN by pregnant women has been fair in those that are aware. The fact that the majority of those that know about ITNs got their information from the hospital was probably because the Nigeria Government uses the public Health care system as its means of creating awareness and distribution at the outset of the programme. Although the place of public health care system cannot be over emphasized in the quest to increase awareness, other means were obviously less utilized and this may have been contributed to the low level of awareness that was found in most of the studies. (Runsewe-Abiodun et al; 2010) reported in the study conducted in Ogun-State among pregnant women that gestational mularia is recognized as a leading contributor to the high maternal mortality ratio-quoted in the region. The study further showed that the low awareness and poor knowledge about ITNs amongst the pregnant women reflect their level of exposure to adequate information and may be continually sensitized through social marketing, radio jingles and community participation to ensure acceptance and utilization of new protective methods. Also in a study conducted in Tanzania (Gross et al. 2011), a wide knowledge gap existed between those that had ANC and those who did not as they are likely to be more exposed to some information during the usual health promotion activities in the clinic. Nigeria has promoted ITNs use in pregnancy along with other evidence-based interventions for malaria control since the Abuja malaria summit, but levels off IN utilization by pregnant women and other vulnerable population groups have remained low. Though malaria prevention through the use of ITNs is a recommended component of routine untenatal care (ANC) in Nigeria (FMOII, 2012) only 27 6% mentioned the hospital as their source of information about ITN AFRICAN DIGITAL HEALTH REPOSITORY PROJECT the information disseminated. were not comprehensive enough. Studies have revealed that many health workers themselves lack the conviction about the unique benefits of (ITN) insecticide treated net. they are inadequately informed about them and are therefore unlikely to convey enough information to the general public. (Guyyat. 2012; Iyaniwura et al; 2011). In addition, the low report of the hospital as source of information about ITN may be due to other various reasons however, health workers may not promote ITN if the nets are not available in the clinic, or if the facilities are under tagged and workers overworked, underpaid and demotivated as is the case in many government health outlets. ## 2.6 Pregnant Womens' Perception of Malaria and Insecticide Treated Net. The use of insecticide treated net is very effective in the control of malaria and it is estimated to be twice as effective as the untreated nets. Some researchers have noted that women who used ITNs had significantly fewer preterm deliveries and babies with higher mean birth weight than women who did not use ITN. Nevertheless, the use of ITNs is still limited mainly because of its unavailability and cost and partly because of the discomfort associated with the nets and the women's fear of possible effect of the impropriated chemicals on them and their unborn babies (Ugyvu and Ezechukwe, 2015). Studies indicated that respondents who thought that it was not good to sleep under ITNs gave the following reasons: ITNs being hot at night, and they got malaria despite sleeping under ITNs. A study by (Binka et al. 1997) showed that the most common perception for non-use of net were mosquitoes nets could sulforate one when sleeping under it, it made one to sweat because it generated heat and so on. While a study conducted in Mbarara district in Uganda in 2013 indicated that there, were doubts about bed net efficacy in preventing malaria. Still contributing factor to low coverage rates is the impact of local customs on net usage. A study also conducted in Kenya found that the youngest children in a household were given the lowest priority for bed net use, despite being a higher-risk population, (Okeh BA, Mwobobia IK: 2012), 3: e 4050). This was also buttressed by another study in Burkina Faso which showed decreased use of bed nets during dty season due to a perceived lower risk of mosquito bites and the practice of sleeping outdoors (Frey, Timore, De Avegri, 2012). Another study in Kenya showed that villagers were using their nets for fishing rather than malaria prevention (Minakowa Disa; 2011) A study (International Journal of Tropical Disease Health that 4 (6) 645: 660, 2014) stated that respondents perceived that ITNs were hot at night, they were not being aware whether ITNs are good and that they got malaria despite sleeping under ITNs. These were their reasons for not using the insecticide treated nets. Malaria is a re-enterging infections contributing to more deaths in present body than in decades, (Breman et al; 2004). Insecticide Treated Bed Net (ITNs) remain a highly effective tool in the fight against malaria (Grabonsky et al; 2007) when used correctly (Baume et al; 2008). Use of ITNs hinges on factors of knowledge including the following, causes of malaria, symptoms used to classify malaria, acknowledgement of a causal link between mosquitoes and malaria, traditional mosquito prevention practices, reservations about use of insecticide and cost of net (Belay et at; 2008). Studies show levels of awareness and understanding of ITNs to greatly vary, as well as within countries. Accordingly, local knowledge and current practices should be accounted for when creating and tailoring an intervention so maximum awareness in any community can be achieved. In general, awareness surrounding malaria is problematic and so community level educational components are necessary to address those deficits. Studies revealed that despite efforts to create awareness of the causal link between mosquitoes and malaria, significant doubt remains. These doubts were not entirely unfounded as some were based on practical experiences, though others were based on traditional medicine and superstitions (Belay et al; 2008). Mosquitoes need to be recognized as the sole cause of malaria prompting a belief that ITNs are a complete defense against transmission and disease. Despite awareness in some areas, low rates of ownership prevailed due to many people believing that ITNs cannot protect against malaria (Baley et al; 2008). Given these inconsistencies, it is imperative that any and all misconceptions be rectified through proper education and awareness campaigns. Through this knowledge and awareness, a culture of bed net use and eventually ITN use, can be created ## 2.7 Ownership and Use of Insecticide Treated Net among Pregnant Women A fundamental determinant of ITN use is household possession of ITNs. If you do not have one, you cannot use one in sub-Saharan Airca, considerable elfort has been made on increasing the number of households possessing ITNs; there has been an impressive AFRICAN DIGITAL HEALTH REPOSITORY PROJECT distribution effort by malaria control programmes, with significant government and donor support over the Past few years. Many countries including Nigeria have increased household coverage to a point where average household coverage with at least two ITNs to a household (WHO, 2011). To aclueve and maintain this universal insecticide treated net coverage (UTC) Rwanda and other countries (in Sub-Saharan Africa) including Nigeria, adopted the WHO's recommendations for high malaria burdens countries of using multiple distribution channels. including free universal insecticide treated net coverage through programmes such as antenatal care (ANC), immunization services for children and pregnant women respectively (Kateera et al: 2015, Malar. 2015). A study in Rwanda, in (2015) showed that a key determinant of ITN impact is bed net use, with disparities between bed net ownership and use(Malar, 2015). One such determinant of bed net use is
seasonality. While higher net use has been reported more in the rainy season due to the essociated high mosquito density, lower net use has been associated with hot dry months due to heat-related discomfort. Other previously reported determinants of net use include number of nets owned per household, sex, with women more likely to use, sex, age, head of household, educational level, disruptive sleeping arrangements and net misuse such as bed nets being used for activities in agriculture and lishing. Hitherto, studies on bed net use have mostly focused on children <5 years and pregnant women, two groups preferentially targeted for net coverage in the past because of their high malaria vulnerability. The evidence for the efficacy of ITNs in preventing malaria infection and its consequences in pregnancy is strong as reported in a Cochrane review in (2009) and in a more recent metabalastis which examined malaria prevention in pregnancy datasets from different African nations. The evidence showed a strong correlation between the use of ITNs and reduction in still birth, improvements in birth weights of habies and a reduction in the prevalence of parasitaemia and anaemia in pregnant women. A communal protective effect of ITNs and reduction in overall vector density has also been observed in some setting (Malar 2013). Despite the wide spread roll out of policies, and substantial financial investments in ITN distribution, coverage remains suboptimal in many regions, particularly with respect to pregnant women. Recently published data from sub-Saharan Africa found that although 96% of countries surveyed had a policy for ITN coverage, reported coverage for pregnant women with ITNs was only 17% (Bennethearball). ITN in the position of the pregnant women and the pregnant women with ITNs was only 17% (Bennethearball). ITN in the position of the pregnant women with ITNs was only 17% (Bennethearball). through antenatal clinics (ANCs) using free distribution or a voucher system, Interestingly, attendance at an ANC was not found to be major factor in limiting coverage. Supply has been identified by the WIIO as the primary barrier to achieving optimal coverage, with the latest world malaria report suggesting that in general population there is a high complation between ownership and use of ITN (Malar, 2013). It is generally known that relationship between ITN ownership and use has been explored by few authors and largely neglected when it concerns pregnant women A 2011 qualitative systematic review of the uptake of malaria prevention interventions in pregnancy in Africa found that relationships with health workers, cost and distance to health facilities, knowledge of antenatal care and local contextual factors influenced women's uptake of intervention (Deresse, 2011). It is so clear and obvious that the provision of ITNs and education are both instrumental for attaining high bed net use and coverage. Still, community specific behaviours remain significant obstacles to achieving optimal results. One must therefore say that combining free distribution of ITN with novel educational model targeting the unique beliefs and behaviours of bed nets receiving communities at large (Maria Widmar et al). Studies also showed that having awareness and knowledge merely does not guarantee practice of intervention methods. The main causes for the low use of ITNs were low ownership due to inaccessibility and lack of regular use because of its exbaustion as well as lack of awareness about its importance in some of the cases. Previous studies have found that free distribution of ITNs has resulted in substantial increase in net coverage compared to subsidies. Sigh et al (2014) also svessed that increase in awareness about ITNs and its benefits as a result of sensitization by teachers and health care providers may likely influence the possession of ITNs of those who had formal education than those who do not have. Other studies showed that provision of ITN through incentives to encourage pregnant women to attend antenatal services and routine five distribution to women at their first antenatal visit increased the reported use of bed nets. (Pull ford et al; 2011), also conducted a review regarding the reported reasons for not using a bed not when one is available in the general population and found that reasons such as discomfort and perceived low mosquito density were the most common reason for non-use. As per the analysis of (Van Ejik et al: 2011) the purest perfortiung countries at a national level, in terms of overall coverage (ITN use at night prior), were Swaziland 1%. Nigeria 5%, Zimbabwe 6%, while the best performing countries or regions were Zanzibar 51%, Tanzinia 26%, Kenya 49% and Madagascar 46%. Between 2000 and 2004, there was a reported decline in ITN use from 58 to 46% in Nigeria, despite an increase in ownership rates (statistical significance of this difference was not calculated) representing a large increase in unused bed nets. The last five years have seen significant gains made in sub-Saharan Africa in terms of scaling up coverage of ITNs in pregnancy, especially in light of supportive policies and financial investments from national governments, but there remains a wide range in the coverage rates at both national and subnational levels. Studies have highlighted the disappointing discrepancy between ownership and use of ITNs amongst pregnant women in many settings, representing a missed opportunity for distribution programmes to address the reasons for this trend. Bed nets use cannot be simply assumed in households receiving and owning ITNs. Available ITN use by pregnant women was as high as 82% in Kenya, and as low as 29% in Zimbabwe, in national data sets. Cited reasons for the discrepancy include non-modifiable factors, such as discomfort and inconvenience, but interestingly, issues of knowledge and perceived vulnerability to malaria were also frequently mentioned. Concerning ITN ownership and acquisition during pregnancy, it was reported in the study conducted in Uganda that 72% of women reported that they owned ITN at the very start of their most recently pregnancy: all of the women who acquired the net during pregnancy reported always sleeping under it for the remainder of their pregnancy. These determinants after critical study of the usage of ITN among pregnant women are cost of purchase, unbearable heat while sleeping under nets, feeling of sufficient, chemical smell, toconvenience, family structure i.e. inadequate space etc. (Laura et al. 2011) The Global Malaria Programme (WHO/GMP) describes a shift in guidance on malaria prevention through the use of insecticide treated nets (ITNs). Tropical Medicine Hypiene In Orthorn patients control programme and their patients involved in long lasting insecticide treated net intervention to purchase only insecticide treated nets. These are designed to maintain their biological efficiency against vector mosquitoes for at least three years in the field under recommended conditions of use, obviating the need for regular insecticide treatment (Binka et al. 2005) American Journal of Tropical Medicine Hypiene In Orthorn particular insecticide treatment (Binka et al. 2005) American Journal of deployed as a vector control intervention. WHO/GMP, therefore recommends full coverage of all people at the risk of malaria in areas targeted for malaria prevention with ITNs. The way in which full coverage should be achieved may vary with particular epidemiological and operational situations. Where young children and pregnant women are most vulnerable groups, their protection is the inunediate priority while progress is made towards achieving full coverage. In areas of low transmission where all age groups are vulnerable, national programmes should establish priorities on the basis of the geographical distribution of the malaria burden in most high burden countries. ITN coverage is still below agreed targets. The best opportunity for rapidly scaling up malaria prevention is the free highly subsidized distribution of ITNs through existing public health services (both fourine and campaigns. Resolution (WHO, 2005) Geneva. Distribution of ITNs should be systematically accompanied by provision of information on how to hang, use and maintain them properly. The Global Malaria Programme position does not exclude other approaches that have been successfully developed and implemented in specific contexts. Focusing on the role of national health services in ITN implementation does not exclude the important roles of other partners now and in future in implementing this intervention. All mosquito nets act as a physical barrier, preventing access by vector mosquitoes and thus providing personal protection against malaria to the individuals using the nets. Pyrethioid insecticides, which are used to treat nets, have an excite-repellent effect that adds a chemical barrier to the physical one, further reducing human vector contact and increasing the protective efficiency of the mosquito nets. Most commonly, the insecticide kills the mosquito vectors that come into contact with ITN. By reducing the vector population in this way, ITNs, when used by a majority of the target population, provide protection for all people in the community, including those who do not themselves sleep under nets (Hawley at al., 2003). A recent study has shown that relatively modest coverage around 60% of all adults and children can achieve equitable community wide benefits. ITNs then work in this case as a vector control intervention for reducing malaria transmission (Killcan et al., 2001). In "real life" situation, the protective efficacy of treated not is significantly compromised by their poor physical conditions. Cuffications are made of the lester and rarely last longer than 2-3 years under field situations. However, new technologies and materials such as Polyethylene have been developed to produce nets that are stronger and longer
lasting Indoor residual spraying, accompanied by larviciding, active and passive case detection have been the main malaria control activities in practice. Geographical locations, tropical climate and socio-economic conditions make appropriate condition for occurrence and persistent transmission of malaria in areas like Badagry LGA under study. In areas, where access to health services is limited and medications often inappropriate, insecticide-treated mosquitoes nets (ITNs) present an attractive option that can effectively complement the main malaria control strategy based on early diagnosis and prompt treatment (HILL, et al; 2010). The study conducted in various parts of the world proved that the use of nets treated with insecticides is an effective tool against mosquito bites and in reducing morbidity and mortality due to malaria (Lengelor, 2007). Currently, the use of long lasting insecticide treated net is one of the main strategies advocated by the WHO to combat the threat of Molaria (Binka et al. 2005). Use of ITN is one of the most cost effective interventions against malaria. According to (Yukish et al. 2010), the cost of five ITNs and two Indoor Residual Spraying (IRS) programmes in Africa. ITN were found to be significantly cheaper to use than conventionally treated nets. In high transmission areas where most of the malaria burden occurs in children under the age of 3 years and assuming that this population group can be effectively targeted with ITNs that use of ITN is 4-5 times cheaper than IRS, which cannot be targeted to children only # 2.8 Factors That Influence Use of Insecticide Treated Net among Pregnant Women (Facilitating and Barrier Factors) Insecticide Treated Net (ITNs) are an effective tool to prevent malaria morbidity and mortality among children and pregnant women in plasmodium falciparum malaria transmission setting (Lengder, 2011). In 2007, the World Health Organisation (WHO) recommended that countries in Africa provide ITNs for all age groups at the risk of malaria. Implicit in the promotion of universal coverage as a goal is the recognition that ITNs, even if underused in some households can still have a knock down effect on mosquito densities, resulting in a community level protective effect. (WHO, 2013)). To benefit from ITNs for prevention of malaria, at either the individual or the community level, requires not only household ownership but also use. It also revealed the benefits of preventing mosquito bites that quite often are imitating and above all prevent one from catching malaria and bites from other insects bed bugs, cockroaches and other cruwling insects) and provide wannth during cold weathers. The study in Uganda also made one to know that the respondents knew that their ITNs were factory treated nets with chemical that could kill or repel mosquitoes. This high level of awareness was quite good for public health intervention. This could probably explained why majority of those who owned ITNs had high compliance of sleeping under it in the week prior to the survey. The World Health Organisation (WHO) promotes the use of Integrated Vector Management (IVM) to control vector borne diseases (VISDs). World Health Organisation Report on malaria, 2013) Geneva WHO. Integrated Vector Management involves the use of a range of proven vector control tools used either alone or in combination selected based on knowledge of the local vector ecology and epidemiological situation. Integrated Vector Management can involve use of multiple vector control tools against a single disease or alternatively a single tool against multiple diseases. This is particularly the base where vector control interventions are active against more than one disease and vector borne diseases overlap in their distribution Integrated Vector Management is a WI 10 policy for effective and sustainable vector control. In order to exploit synergies between vector borne diseases and make vector control move cost effective. integrated vector management advocates for the use of shared interventions across diseases. However, in order to be able to do this, it is important to first know whether interventions are effective against multiple diseases Insecticide Treated Nets (ITNs) form the mainstay of malaria vector control in many endemic areas World Health Organization WHO,2013) ITNs are estimated to reduce all causes of child mortality by 17% and uncomplicated malaria. plusmodium salciparum episodes in areas of stable transmission by 50% compared to no nets (Cocharc, 2011). ITNs have been rolled out in malaria endemic regions on a large scale, particularly in sub-Saharan Africa, Between 2004 and 2010, the number of ITNs delivered by Manufactures to malaria endemie countries in Sub-Saharan Assica increased from 6million to 145million (WHO, 2012) The percentage of households owning at least one ITN inSub Sahara Africa (SSA) is estimated to have risen from 3% in 2000 to 56% in 2012, but declined to 54% in 2013. More work is needed to reach ITN coverage targets set by Roll Back Malaria of 80% use of ITN by individuals in populations at risk (Tusting et al; 2013). More recently conventional ITNs have been replaced by Long Lasting Insecticide Treated Net (LLINs) that maintain effective levels of insecticide for at least three years meaning that retreatment with insecticide is not necessary. Insecticide Treated Nets (ITNs) are likely to be effective against multiple vectors and vector borne diseases since a substantial proportion of transmission occurs indoors, but this has not been systematically assessed. ITNs as well as insecticide-treated curtains (ITC) and insecticide screening are likely to function in the same way. Disease vectors are attracted to host odours emanating either from people sleeping under ITNs or from people within houses in the case of ITC and ITS. Vectors then coming into contact with these materials are deterred or killed and thus it can be said that the ITNs and house are acting as "baited traps". They may also be working to some extent to prevent vectors from entering houses (household level protection) rather than personal protection in the case of ITNs. Matoru and colleagues (Mathanga, 2009) assert that knowledge (or lack thereof) and overall beliefs about ITNs are a considerable barrier to ITN use. During a focus group theparticipants stated: "When you look at us and the clothes we are wearing, would you really think we cannot buy bed net? For me I think we don't have good knowledge about those things and how important they are in lighting malaria." Lack of value attached to ITNs plays a large tole, without proper knowledge; populations are made unable to connect malaria prevention and ITNs (Njau, 2009). Thus, it is necessary not to stop at the fact that ITNs solely prevent malaria, but also to illuminate the direct benefits of ITN use in terms of financial costs averted through less hospital visits. Distance and accessibility to ITNs distribution points also serves as barriers to ownership as access to distribution posts still remains scarce in many countries and communities (Eisele, 2009). The likehood of ITN purchase is inversely related to the distance from an ITN distribution point (Njau. 2009). This inverse relationship is largely responsible for the drastically lower rates of ownership in inral communities. Without reasonable access, let alone equitable access, populations removed from more urban/commercial centres will largely never encounter ITN ownership opportunities. It is evident that the public and commercial sectors are significantly intervened as neither can clicit high ITN coverage rates without the other (Gu et al; 2009). Accordingly, these sectors must work together to booster I INs demand, supply and availability Factors that will ultimately enable this kind of AFREANDIGOAL HEALTH REPOSITORY PROJECT of texation on 1TNs, quality control between 1TN producers and suppliers, and equity in accessibility of 1TNs (Gu et al. 2009). possible sustainability. This is due to the changing financial climate which does not allow for long term linancial commitments (Manthanga et al. 2009). An example of the need for programme sustainability and reduced reliance on donors occurred in Kenya during late 2005 to early 2006. Free ITM distribution took place through twenty-eight ANCs distributing 17,893 ITMs across the country. However, distribution came to a prolonged halt when one donor revolted commitment Distribution was not resumed until another donor and subsequent funding was secured (Eisele et al; 2009). Programme stability aims to avoid and eradicate situations such as this. Instead, a mixed approach should be employed when possible to ensure longevity and effectiveness (Eisele et al; 2009). ## Conceptual Francwork The utilization of Insecticide Treated Net by Pregnant women can further be explained by using Health Belief Model. The Health Belief Model (HBM) was developed in the early 1950s and formally formulated by social scientists Resenstock (1974) at the U.S Public Health service in order to understand the reason why people failed to adopt disease prevention strategies or screening texts for the early detection of disease. The HBM suggests that a person's belief in a personal threat of an illness or disease together with a person's belief in the effectiveness of the recommended bealth behaviour or action will predict the likelihood the person will adopt the behaviour. There are six constructs to the IIBM. They are perceived susceptibility, perceived seventy, perceived benefits; perceived barrier; cue to action and self-efficacy. The application of the Ilealth Belief Model to utilization of Insecticide Treated Net. The Health Belief Model has been applied to a broad range of health behaviours and subject populations. Three broad areas can be identified (comer Morman, 1996) (1) preventive health behaviours, which include health promotion (for example use of ITN for prevention of
mosquito bite) and health risk (e.g sleeping without any protection from the mosquito bite) (2) sick role behaviours, which refer to compliance with recommended medical regime (e.g. adherence to net use) usually following professional diagnosis of illness and (3) clinic use which includes physician visits for variety of reasons (e.g follow-ups) | Concept | | Malaria test (RDT/Mlicroscopic sercening for mularia) | |-----------------------------|--|---| | 1. Perceived susceptibility | Pregnant women believe they can be infected with malaria | Pregnant women believe they may have been exposed to malaria | | 2. Perecived severity | Pregnant women believe that the consequences of getting malaria is significant enough to avoid not using net | The pregnant women believe the consequences of getting malaria through mosquito bite without the knowledge and treatment of malaria are significant enough. | | 3. Perceived benefits | Pregnant women believe that the recommended action of using ITN would protect them from having malaria and the psychological cost | | | 4. Perceived barrier | Pregnant women identify their personal barriers to using net. (e.g fear of itching. not comfortable in the process of getting in and out | their personal barriers to
getting tested with | | 5. Cues to action | | | Figure 2.1 Health Belief Model Adapted to study pregnant women's knowledge, perception, experiences and practices relating to Malaria and ITN #### CHAPTER THREE #### METHODOLOGY ### Study Design and Scape This study was a cross-sectional survey which focused on pregnant women's knowledge, perception and utilization of Insecticide Treated Nets (ITN). The study was limited in scope to the investigation of the factors which influenced the utilization of ITN among pregnant women who were attending primary Health Care Centres in Badagry Local Government Area of Lagos State #### Description of the study area The study was carried out in Badagry LGA, which is located in the South-western part of Nigeria; it is a border town between Nigeria and the Republic of Benin. The LGA is about 57 kilometres by road from Lagos and runs parralled to the sea. Badagry was founded around 1425AD; (Mesewaku, 2001); (Avosch, 1938). The occupation of the people include fishing, farming, arts and crafts, salt making and trading Badagry hosts a thriving museum which contains valuable historical antifacts especially those relating to slavery. The people are hospitable and they practice Islam, Christianity and African traditional religion, The town consists of residents from different parts of Nigeria. The language of the people is "Ogu". Badagry LGA comprises different communities, prominent among which are Apa, Ajido, Kweme, Ibereko, Ivoro, Ilogbo, Ikoga and the fourteen Ajara communities namely: Topa, Vetho, Agamathen, Isalu, Iyalin, Toriko, Agelaso Agbovipe, Itohun, Agadangba, Doko, Toriko, Panko and Zinvie-seje. In the course of history and particularly being the first community in Nigeria to have contact with Europeans, Dadagry has recorded many firsts in the annals of the Nigeria history. For instance, the first storey building in Nigeria was built there in the year 1845, slave relies, statue of the venue where Christianity was first preached in Nigeria, the first primary school in Nigeria (St. Thomas Primary School) and the early missionaries cometery are all located in Badagry LGA. It is regarded as the cradle of western civilization in Nigeria Temperature is high throughout the year at about 80°C with a small range of temperature Avoseh (1939). The humidity is also high most of the time except during the dry season when it falls at about 60%. (Mescaffican dispersion falls at about 60% (Mescaffican dispersion falls) two institutions of higher learning: these institutions are, the Administrative Staff College of Nigeria (ASCON) and Nigeria French Language Village. There is a General Hospital, 19 Primary Health Centres and 23 Private Health facilities. There are 56 Public Primary Schools, 312 Private Primary Schools, 14 Public Secondary Schools and 26 Private Secondary Schools, Malaria is endemic in Badagry Local Government. The most vulnerable groups to malaria infection are mainly, children and pregnant women. The existing 19 primary health centres in the LGA are responsible for treating malaria cases (See Table 1), while 11 of the PHCs renders in addition ANC services (See table 2) above five years were treated for malaria. From January to June 2016, 2942 under five and 5592 persons above five were also treated for malaria in the LGA. (M & E, BLG2015: 2016). The LGA routinely distributes ITN during ANC first visits to pregnant women and this is with effect from 2011. The ITNs are mostly supplied by the Global funds through NMCP in collaboration with the Lagos State Ministry of Health. Other stakeholders that are involved in the ITN distribution in the LGA are the Rotary Clubs, youth organizations in the state and sometimes the serving Youth Corps Members. ### Study variables The major independent variables included the following socio-demographic characteristics: age: religion; level of education and marital status. The dependent variables were the following: pregnancy and fertility; history; awareness and knowledge relating to malaria; insecticide treated net; perception relating to ITN; perceived seriousness and vulnerability to malaria; malaria related experiences, treatment and prevention related issues; ownership and use of ITN; practices relating to use of ITN; barriers and facilitating factors relating to the use of ITN. Table 3.1 Health facilities in Badagry Local Government Area | N | Name and location of facility | Whether provide ANC service | | | |----|---|-----------------------------|----------|--| | | Traine and location of facility | Yes | No | | | | Marina PHC, Marina-Badagey | / | 0- | | | | Ajara PHC, Mangoro, Ajara | / | | | | | Pota PI IC, Ikoga Rd. Pota Badagiy | 10- | | | | | Ajido PIIC, Whispering Palms Rd, Iworo- Ajido | 50 | | | | 5 | Topo/Idale PHC, Idale-Badagry | | / | | | 6 | Gberesu PHC, Gberesu Sea-beach | | | | | 7 | lingbo-lragon PHC, lragbo, Badago | | / | | | 8 | Topa Health-post, Ajara-topa, Badagry | | / | | | 9 | Ilado PHC, Iworo-ajido Rd. Ilado | ✓ | | | | 10 | Ibereko PIIC, Ibereko, Badagry | | | | | 11 | llogbo PHC, llogbo, Badagry | \ | | | | 12 | Mowo LPHC, Ikoga Rd. Mowo-Badagry | | | | | 13 | Morogbo PHC, Morogbo, Badagiy | / | | | | 14 | Apa PHC, Along Owode Rd. Apa | / | | | | 15 | Igbogbele PHC, Igbogbele, Budnyry | V | | | | 16 | Farasime PHE, Farasime Vill, Badagry | | V | | | 17 | Aseri Min Clinic. Owode-Market Aseri | | V | | | 18 | Sapo PilC, Along Badagry Seme exp. way Sapo | | V | | | 19 | Seme PHC, Seme border, Badagry | \ | | | ## Sample Size determination The determination of the sample size for this research was calculated by using the following somple size formula: Z = a variable with a critical value of (i.e 95% confidence level) p = prevalence of utilization of i INs among pregnant women (22%) WilO. 2010 d = desired precision Where $$Z^2 = 1.96^2$$ $$p = 0.22$$ thus $q = 1 - q = 0.78$ $$d = 0.04$$ $$N = 1.96^2 \times 0.22 \times 0.78 + 0.0016$$ Then, $$N = 1.96 \times 0.22 \times 0.78$$ $$0.04^{2} = 412$$ ## Sampling Procedure The procedure involved the stages thus: - Stage One: All the eleven (11) PILCF rendering ANC services were purposively 3 selected out of the total number of PHCF in Bodagry Local Government Area. - Stage Two: Taking the prevalence of utilization of ITN among pregrant women to be 4 22% (WHO 2010). The sample size was calculated by using the sample size formular N = Zang (Leslie Kish Formula) to arrive at 412 Stage Three: Systematic random sampling was used to select respondents in each facility with the aid of their ANC register from the Ante-natal attendance register. the weekly attendence for each PHC was collected. The register showed that the total weekly ANC visits to the eleven (11) PHCF was 139 (See table 2.3 for details) A formular was derived to account for the proportionate ANC visits to each of the health care facility, the formular was as follow. represented the total weekly attendance to all the eleven (11) PHC rendering24hrs. For instance the proportionate sample for AJARA PHC was calculated as: $\frac{25}{139}$ x 412 which resulted in 72. The proportionate sample sizes for the remaining 10 PHC facilities were similarly calculated this way. (See table 3.2 for details). In each PIIC facility, the proportionate sample size was selected consecutively on an ANC clinic day. #### Instrument for Data Collection Data collection involved the use of a semi-structured questionnaire. The questionnaire comprised the following content elements: socio-demographic characteristic of the respondent; pregnancy and facility related history; awareness and knowledge relating to malaria and ITN; treatment and prevention related issues; ownership and use of ITN; practices relating to use of ITN; barrier factors relating to the use of ITN, and facilitating factors relating to use on Insecticide Treated Nets among pregnant women. ## Validity and Reliability l'alidity of the instrument The validity of the questionnaire was ensured in several ways. The instrument was designed after the review of related literature. The drafted questionnaire was then given to my supervisor for his input. The drafted que tionnaire was also given to other experts in community medicine, epidemiology and Health Promotion and Education for comments. Their comments were used to improve the
quality of the instrument. ## Reliability of the study instrument Reliability was ensured by pretesting the questionnaire among a group of pregnant women in Oto-ljanikin. PHC in Oto-Awori LGA. Forty-two (42) copies of the questionnaire were administered among pregnant women in Oto-ljanikin Primary Health Care Centre. The copies of the questionnaire were edited coded and fed into a computer. The data were analysed using descriptive statistics and the alpha coefficient was calculated to determine the reliability of the questionnaire. The result obtained was 0.73 indicating that the instrument was valid. represented the total weekly attendance to all the eleven (11) PHC rendering 24hrs For instance the proportionate sample for AJARA PHC was calculated as. $\frac{25}{139} \times 412$ which resulted in 72. The proportionate sample sizes for the remaining 10 PHC facilities were similarly calculated this way. (See table 3.2 for details). In each PIC facility, the proportionate sample size was selected consecutively on an ANC clinic day. #### Instrument for Data Collection Data collection involved the use of a semi-structured questionnaire. The questionnaire comprised the following content elements: socio-demographic characteristic of the respondent; pregnancy and facility related history; awareness and knowledge relating to malaria and ITN; treatment and prevention related issues; ownership and use of ITN; practices relating to use of ITN; barrier factors relating to the use of ITN; and facilitating factors relating to use on Insecticide Treated Nets among pregnant women. ## Validity and Reliability l'alidity of the instrument The validity of the questionnaire was ensured in several ways. The instrument was designed after the review of related literature. The drafted questionnaire was then given to my supervisor for his input. The drafted questionnaire was also given to other experts in community medicine, epidemiology and Health Promotion and Education for comments. Their comments were used to improve the quality of the instrument. ## Reliability of the study instrument Reliability was ensured by pretesting the questionnaire among a group of pregnant women in Oto-ljanikin, PHC in Oto-Awori LGA. Forty-two (42) copies of the questionnaire were administered among pregnant women in Oto-ljanikin Primary Health Care Centre. The copies of the questionnaire were edited, coded and fed into a computer. The data were analysed using descriptive statistics and the alpha coefficient was calculated to determine the reliability of the questionnaire. The result obtained was 0.73 indicating that the instrument was valid. ## Training of Research Assistants (RA) A one day training was conducted for five recruited Research Assistants (RA) who helped in data collection under the supervision of the investigator. The Research Assistants that participated in the pre-test exercise were practicing community Health Officers in the Local Government Area. The training curriculum focused on issues which include the following: how to establish iapport with interviewees; explanation of the procedure for data collection to respondents; ways of securing consent from the respondents and interviewing skills. The training methods used included, brief lecture, discussion, role play and field trials. #### Data Collection Process An intincry for visiting the cleven (11) Primary Health Centres for data collection was drawn up. Two health cure facilities were visited twice in a week before the proportionate sample size could be interviewed. At each health centre, having introduced the process to the pregnant women by the health care provider giving health talk, each research assistant was assigned to each respondent. First rapport was established between the RA and the respondent. This was followed by the securing of informed consent from the respondent. Only the respondent who consented to parcitipate in the study was interviewed. ## Data Analysis The steps involved in data analysis included the following: - Serial Numbers were written on copies of the questionnaires for easy identification and recall of any instrument with problems. This was done before administering the questionnaire to the participants. - 2, A coding guide was developed to enter the data - Data from the questionnaire survey were coded and entered into the computer using 3. SPSS version 15.0. Data were later cleaned. - 4. Data analysis was done using descriptive statistics I-test And ANOVA. - 5. The findings are presented in chapter 4 ## Ethical consideration Ethical approval was received from the Oyo state Ministry of Health. Permission was sought from the authorities of the Local Government used for the study. Consent of the participants were sought after intimating them with the purpose of the study, its importance and benefit to their health. ## Limitation of the study The limitation encountered during the study was mainly the inability of the respondents to spend enough time with the research assistants. Many respondents were in a haste to leave Persuation and provision of brief information on the importance of the study were used to overcome the challenge or reduce it to the bearest minimum. Table 3.2: Total weekly attendance at each PHC and the total sample size of each PHC | S/N | Health facility | Total weekly attendance | Calculated total proportionate sample size | |-----|-----------------|-------------------------|--| | 1 | Ajara PHC | 25 | 74 | | 2 | Marina PHC | 20 | 59 | | 3 | Pota PHC | 18 | 53 | | 4 | Ajido PHC | 15 | 44 | | 5 | Apa PHC | 5 | 15 | | 6 | llogbo PHC | 10 | 30 | | 7 | llado PHC | 15 | 44 | | 8 | Seme PHC | 4 | 12 | | 9 | Ibereko PHC | 5 | 15 | | 10 | Morogbo PHC | 10 | 30 | | 11 | Igbogbele PIIC | 12 | 36 | | | TOTAL | 139 | 412 | #### CHAPTER FOUR #### RESULTS ## 1.1: Awareness und Knowledge Relating to Malaria und Insecticide Treated Nets Respondents' knowledge on the cause of malaria is highlighted in Table 4.1. The table shows that majority (82.0%) of the respondents stated erroneously that malaria is caused by the mosquito, while only 3.3% correctly stated that malaria is caused by plasmodium. Other causes mentioned are shown in the table under reference. The symptoms of malaria are also shown in Table 4.1. About a quarter (24.5%) of the respondents correctly listed fever as one of the major symptoms of malaria. This was followed distantly by mention of general body pains (4.4%). The other details relating to the responses of the respondents are contained in the Table 4.1. Respondents' knowledge on the possible health effects of untreated malaria among pregnant women is presented in table 4.2. The table shows that 19.2% of the respondents mentioned weakness of the body, while anaemia, loss of pregnancy, death, low birth weight and still birth were correctly listed as possible adverse effects of malaria in pregnancy by 17.7%, 16.5%, 9.0%, 1.2% and 0.7% respectively. Respondents' knowledge on the health effects of untreated malaria on unborn children is shown in figure 2. The figure shows that 39.8% erroneously stated that jaundice could be one of the health effects while Intra-uterine death and low birth weight were correctly listed by 23.4% and 17.8% of the respondents as possible health effects of untreated malaria on unborn children. Table 4.3 reveals respondents' knowledge relating to whether pregnant women can pass malaria to their unborn babies. The table shows that majority (87.4%) of the respondents correctly stated that it was true that malaria can be transmitted from mothers to their unborn babies in-utero while 6.0% said they did not know. The table also highlighted the categories of people that readily get malaria. Majority (72.8%) correctly stated that under five children could readily get malaria. Other categories of respondents that are highly vulnerable to malaria were correctly mentioned as children with sickle cell (7.0%) pregnant women (9.7%) and visitors from non-endemic areas (1.0%). Respondents were asked whether they had ever heard of insecticide treated net. Their responses are presented in table 4.4. Most (97.3%) respondents stated that they had heard of AFRICAN DIGITAL HEALTH REPOSITORY PROJECT heard about long lasting insecticide treated net. Table 4.5 shows the knowledge of the respondents relating to the benefits of insecticide treated nets. It was noted that more than one quarter of the pregnant women (41.9%) correctly stated that the technology can be used to prevent malaria. The proportion of respondents who correctly stated that it helps reduce malaria related mortality in under-five was 2.3%. Respondents' knowledge relating to the consequences of malaria is presented in table 4.6. Slightly over half (50.5%) incorrectly stated that malaria can not lead to abortion while 15.5% said that they were not aware of the abortion as a consequence of the disease. The proportion of the respondents who stated correctly that malaria could lead to shortage of blood was 67.2%; some (22.8%) erroneously stated that the disease cannot lead to shortage of blood. Majority (82.0%) of the respondents correctly stated that pregnant women's exposure to malaria can lead to the birth of a baby with low birth weight. Weil over half (57.3%) of the respondents correctly stated that malaria can lead to miscarriage. Some (26.7%) of the respondents enoneously reported that the disease cannot in anyway lead to miscarriage. Only 12.9% of the respondents were knowledgeable about the fact that malaria can lead to febrile convulsion. Majority (71.8%) erroneously suited that the disease cannot in anyway lead to febrile convulsion. The proportion of respondents who stated wrongly that malaria cannot lead to a reduction in productivity was 24.8%. A higher proportion (64.8%) correctly disclosed that malaria can lead to a reduction in the amount of work which one does. The other details relating to the respondents'
knowledge of the consequences of malaria are shown in the table under reference. Figure 1 presents the categories of respondents' knowledge scores. The figure shows that less than half (44.7%) of the respondents had good knowledge. More than half (55.3%) respondents bad poor knowledge. heard about long lasting insecticide treated net. Table 4.5 shows the knowledge of the respondents relating to the benefits of insecticide treated nets. It was noted that more than one quarter of the pregnant wamen (41.9%) correctly stated that the technology can be used to prevent malaria. The proportion of respondents who correctly stated that it helps reduce malaria related mortality in under-live was 2.3%. Respondents' knowledge relating to the consequences of malaria is presented in table 4.6. Slightly over half (50.5%) incorrectly stated that malaria can not lead to abortion while 15.5% said that they were not aware of the abortion as a consequence of the disease. The proportion of the respondents who stated correctly that malaria could lead to shortage of blood was 67.2%; some (22.8%) erroneously stated that the disease cannot lead to shortage of blood. Majority (82.0%) of the respondents correctly stated that pregnant women's exposure to malaria can lead to the birth of a baby with low birth weight. Well over half (57.3%) of the respondents correctly stated that malaria can lead to miscarriage. Some (26.7%) of the respondents erroneously reported that the disease cannot in anyway lead to miscarriage. Only 12.9% of the respondents were knowledgeable about the fact that malaria can lead to febrile convulsion. Majority (71.8%) erroneously stated that the disease cannot in anyway lead to febrile convulsion. The proportion of respondents who stated wrongly that malaria cannot lead to a reduction in productivity was 24.8%. A higher proportion (64.8%) correctly disclosed that malaria can lead to a reduction in the amount of work which one does. The other details relating to the respondents' knowledge of the consequences of malaria are shown in the table under reference. Figure 1 presents the categories of respondents' knowledge scores. The figure shows that less than half (44.7%) of the respondents had good knowledge. More than half (55.3%) respondents had poor knowledge. Table 4.1: Awareness and Knowledge Relating to Malaria and Insecticitle Treated Nets: Cause and Symptoms | | | N=112 | |--|-----|-------------| | Knowledge | No | 9/0 | | Respondents' knowledge on cause of malaria | | | | Mosquito | 338 | 82,0 | | Dirty environment | 36 | | | l'lasmodium parasite* | 137 | 8.7 | | Staying in the sun | 6 | 3.3 | | Elcat | | 1.5 | | Suess | 3 | 1.2 | | Too much of sed oil | | 0.7 | | Vomiting | 1 | 0.2 | | Non response | 9 | 0.2 | | Major symptoms of malaria | 7 | 2.2 | | Headnche | 158 | 20.4 | | Fever* | 101 | 38.4 | | General body pains* | 18 | 24.5 | | Others** | 127 | 4.4
30.8 | ⁺ There were multiple responses ^{*} Correct response ⁻Loss of appetite (1.2%), Weakness of the body (6.8%), Bitter taste (4.9%). Vomiting (9.2%), Dark Urine (1.5%), Spitting saliva (0.5%), Convulsion (0.2%), Cough and Calanth (3.8%), Anaemia (0.2%), Diarrhoca (1.0%), Yellowness of the eyes (0.7%). Death (0.2%), Abdominal pains (0.2%), Sweating (0.2%), Thirst (0.2%) Table 4.2: Respondents' knowledge on possible health effects of untreated malaria among pregnant women | | | N=362 | |---|---------------|-------| | Possible Health Effects (Dangers) of Untreated Ma
Pregnant Woman** | laria in a No | 9/0 | | Weakness of the body | 79 | 19.2 | | Anaemia* | 73 | 17.7 | | Loss of pregnancy* | 68 | 16.5 | | Death* | 37 | 9.0 | | Yellowness of the eyes of the mother | 29 | 7.0 | | Convulsion/Coma/Fever | 24 | 5.8 | | 1 leadache | 15 | 3.6 | | Difficulty in breathing | 13 | 3.2 | | Insomnia | 7 | 1,7 | | Anorexia | 6 | 1.5 | | Low birth weight* | 5 | 1.2 | | Stillbirth* | 3 | 0.7 | | No idea/I do not know | 3 | 0.7 | Correct responses ^{• •} There were multiple responses. Fig 4.2: Respondents' knowledge on the health effects of untreated mahiria in unborn Table 4.3: Respondents' knowledge relating to transmission of malaria in-utero and groups of persons that readily vulnerable to malaria | (N=412) | | |--|-----------| | Fransmission and Vulnerability | | | Malaria can be passed from a mother to her | No % | | unborn haby in-utero(N= 412) | | | True* | | | False | 360, 87.4 | | Don't Know | 27 6.6 | | | 25 6.0 | | Group of people that can reudily Set malaria (N=396) | | | Under live* | 200 760 | | Piegnant women* | 300 75.8 | | Children with sickle cell* | 40 10.1 | | Young persons | 29 7.3 | | All adults | 11 2.7 | | | 6 1.5 | | People that live beside rivers | 6 1.5 | | Visitors from USA non endensic areas | 4 1.0 | Table 4.4: Respondents' awareness relating to insecticide treated nets and long lasting insecticide treated nets | | r | i=412 | |---|-----|-------| | Awareness Ever beard of insecticide treated net | No | 0/0 | | Yes | 401 | 97.3 | | No | 11 | 2.7 | | Ever heard about long lasting insecticide treated net | | | | Yes | 360 | 87.4 | | No O | 52 | 12.6 | Table 4.5: Respondents' knowledge relating to the benefits of Insecticide Treated Net | | N: | =394 | |--|-----|------| | Benefits | No | 0/0 | | t prevents malaria+ | 165 | 41.9 | | kills mosquitocs | 150 | 38.0 | | prevents other diseases apait from malaria | 33 | 8.4 | | t helps to sleep well | 32 | 8.2 | | It reduces malaria mortality in children under five+ | 9 | 2.3 | | Don't know | 4 | 1.0 | | It withstands multiple wash | 1 | 0.6 | Table 4.6: Respondents' Knowledge Relating to the Consequences of Malaria N=412 | Statements | | | | | |---|------------|------------|----------------|--| | | | Responses | | | | | True (%) | False (%) | Don't Know (%) | | | Malaria cannot lead to aboution | 140(34.0) | 208(50,5) | 64(15.5) | | | Malaria cannot in any way lead to shortage of blood | 94(22.8) | 277(67.2)* | 41(10.0) | | | Experiencing repeated exposure of malaria can lead to birth of a baby with low birth weight | 338(82.0)• | 35(8.5) | 39(9.5) | | | Malaria cannot in anyway lead to miscarriage | 110(26.7) | 236(57.3)* | 66(16.0) | | | Malaria cannot in anyway lead to sebrile convulsion | 296(71.8) | 53(12.9)* | 63(15.3) | | | Malaria cannot lead to a reduction in the amount of work which one usually does | 102(24.8) | 267(64.8)* | 43(10.4) | | ^{*}Correct Reponses Figure 4.3: Categories of knowledge scores among the respondents ## 4.2: Comparison of respondents mean knowledge scores The comparison of respondents' mean knowledge scores by age is shown in table 4.7 Respondents aged 241 years had the highest mean knowledge score of 13.3 ± 31. This is followed closely by respondents aged <21 years with a mean score of 12.2 ± 2.5. The other mean scores by age are depicted in the table. Overall, there was a significant difference in respondents mean knowledge score by age. Table 4.8 presents the comparison of respondents' mean knowledge scores by marital status. Respondents who were single had a mean score of 11.2 ± 3.8 followed by those who were married with a mean score of 10.9 ± 3.1 . The score among respondents who were divorced/separated was 10.7 ± 3.1 . Overall, there was no significant difference in respondents mean scores by married status (See table for details). The comparison of respondents mean knowledge scores by level of education is shown in table 4.9. The highest mean knowledge score of 12.2 ± 3.2 was obtained by respondents with no formal education. The mean knowledge score among respondents with secondary school education was 11.2 ± 3.2 (See table for other mean scores). On the whole, there was a significant difference between respondents mean scores by level of education. The mean knowledge scores among those with formal education and non-formal education were also compared (see table 4.10). The mean knowledge scores of 12.2 ± 3.2 obtained by respondents with no formal education was noted to be significantly higher than the 10.8 ± 3.1 scored by tespondents with formal education. Table 4.11 reveals the comparison of respondents' mean knowledge scores by ownership of an ITN. The mean knowledge score of 11.1 ± 3.0 obtained by respondents with ITN was significantly higher than the mean score of 9.9 ± 3.6 obtained by respondents who had no ITN. Similarly, the mean knowledge scores of the respondents who ever used an ITN and those who had never used were compared and the results are presented in table 12. The mean knowledge score of respondents who had ever used an ITN was 11.1 ± 3.0 while among those who had never used one the mean score was 10.1 ± 3.5 . The difference was found to be significant. Table 4.7 Comparison of respondents' mean knowledge scores by age N=412 | Age in | ge in No Knowledge Scures | | No | Knowledge Scores | Knowledge Scores | F | Level of Significance | |------------|---------------------------|------|-----|------------------|------------------|---|-----------------------| | years | \bar{x} SD | - | | | | | | | Q 1 | 12 | 12.2 | 2.5 | 2,662 | 0.048* | | | | 21 - 30 | 249 | 10.6 | 3.0 | | | | | | 31-40 | 145 | 11.1 | 3.3 | | | | | | ≥41 | 6 | 13.3 | 3.1 | | | | | Table 4.8: Comparison of respondents' mean knowledge scores by marital status | - | | | 4 4 | |---|----------|------|-----| | | — | 46 8 | | | Marital Status | No | Knowledge | Scores | F | Level of Significance | |------------------------|-----|----------------|--------|-------|-----------------------| | | | \overline{X} | SD | | | | Single | 12 | 11.2 | 3.8 | 0.056 | 0.945* | | Married |
392 | 10.9 | 3.1 | | | | Divorced/Separ
ated | 8 | 10.7 | 3.1 | | | Table 4.9: Comparison of respondents' mean knowledge scores by level of education N=112 | Level of | No | Knowledge Scores | | F | Level of Significance | | |---|-----|------------------|-----|-------|-----------------------|--| | education | | X | SD | | | | | No formal education | 20 | 12.2 | 3.2 | 3.453 | 0.017 | | | l'rimary
school | 62 | 11.0 | 3.2 | | | | | Secondary school | 157 | 11.2 | 2.8 | | | | | l'ost secondary** (NCE, IIND, 1º degree, Masters) | 173 | 10.4 | 3.4 | | | | | Total | 412 | 10.8 | 3.1 | | | | ^{*}Significant at 0.05 Table 4.10: Comparison of respondents' mean knowledge scores by receipt of formal and Non-formal education | Level of | No | Knowled | ge Scores | F | Level of Significance | |---------------------|-----|---------|-----------|-------|-----------------------| | Education received | | X | SD | | | | No formal education | 20 | 12.2 | 3.2 | 1.997 | 0.046* | | Formal education | 392 | 10.8 | 3.1 | | | ^{*}Significant at 0.05 ^{**}This indicate NCE, HND, First Degree, Masters. Table 4.11: Comparison of respondents' mean knowledge scores by ownership of ITN | N | 1= | 1 | 2 | |-----|----|---|---| | , , | | • | | | No | Knowledge Scores | | T | Level of Significance | |-----|------------------|------------|--------------|--------------------------| | | \bar{x} | SD | | | | 337 | 11.1 | 3.0 | 2.706 | 0.007* | | 69 | 9.9 | 3.6 | | | | | 337 | 337 11.1 | 337 11.1 3.0 | X SD 337 11.1 3.0 2.706 | Table 4.12: Comparison of respondents' mean by ever use of an ITN | History of | No | Knowledge Scores | | Т | Level of Viscolina | | |------------------|-----|------------------|-----|-------|-----------------------|--| | used | | \overline{X} | SD | | Level of Significance | | | Ever used | 304 | 11.1 | 3.0 | 2.899 | 0.004 | | | Never used | 99 | 10,1 | 3.5 | | | | | gnificant at 0.0 | 05 | # 43: Respondents' perception relating to insecticide treated net The perception of the respondents relating to insecticide treated net is shown in table 4.13. Majority (89.1%) of respondents were undecided in respect of whether insecticide treated net (1fN) can stop mosquito from getting access to someone. Only 8.7% were of the perception that insecticide treated net cannot stop mosquito from biting someone. This is not a reflection of reality if net are used appropriately. The perception of 9.0% was that insecticide treated nets are only useful for preventing mosquitoes during raining season; this is an inappropriate perception. Very few (10.4%) of the respondents had inappropriate perception that ITN can suffice tusers. A majority (85.0%) did not share this perception. The table under rescience also revealed that 85.7% were undecided in aspect of whether pregnant women should only use insecticide treated net when they are in third trimester. A majority (82.3%) were also undecided in terms of whether ITN can not prevent malaria. The results of respondents, perception relating to seriousness and vulnerability to malaria are presented in Table 4.14. Majority (85.4%) of the respondents were undecided that malaria was a serious disease for a pregnant wontan. Majority (81.6%) did. however, also were undecided with the view that malaria is not more serious in pregnant women than women who are not pregnant. The proportion of respondents who were of the perception that they could get malaria but that the disease cannot affect their babies in the womb was 19.7%. Slightly over half (54.4%) of the respondents were of the opinion that their chance of getting malaria in pregnancy was high. Tuble 4.13: Respondents' perception relating to insecticide treated net N=412 | Perception related statements | | Responses | | |--|-----------|---------------|--------------| | | Agree (%) | Undecided (%) | Disagree (%) | | Mosquito net not treated with insecticide are safer than those with insecticides | 30(7.3) | 372(90.3) | 10(2.4) | | Insecticide treated net cannot stop mosquito from biting someone | 36(8.7) | 367(89.1) | 9(2 2) | | Taking agho or herbal medicine regularly protects people from malaria than using an insecticide treated nets | 48(11.7) | 313(76.0) | 51(12.3) | | Insecticide treated nets are only useful for preventing mosquitoes during the rainy season | 37(9.0) | 369(89.6) | 6(1.4) | | One cannot use a mosquito net if one's bed is bigger or larger | 23(5.6) | 376(91.3) | 13(3.1) | | Mosquito net can sull'ocate one when sleeping under it | 43(10,4) | 19(4.6) | 350(85.0) | | Sleeping under mosquito net does not allow one to sleep well | 32(7.8) | 370(89.8) | 10(2.4) | | Use of insecticide treated net throughout pregnancy can harm | 29(7.0) | 371(90.1) | 12(2.9) | | Sleeping under mosquito net makes one sweat because it generates heat | 29(48.8) | 371(46.1) | 21(5.1) | | Pregnant women should only use insecticide treated net when they are in | | 353(85.7) | 24(5.8) | | Insecticide treated net cannot prevent | 47(11.4) | 339(82.3) | 26(6.3) | Table 4.14: Respondents' Perception relating to Seriousness and Vulnerability to | Perception statements relating to | | | N=412 | |--|-----------|---------------|--------------| | scriousness and vulnerability | | Responses | | | | Agree (%) | Undeci di (%) | Disagree (%) | | Malaria is not a scrious disease for a preguant woman | 32(7.8) | 352(85.4) | 28(6.8) | | Malaria is not more serious in pregnant women than women who are not pregnant | 42(11.4) | 336(81.6) | 29(7.0) | | Malaria is a mild disease | 58(14.1) | 335(81.3) | 19(4.6) | | I believe you can never get malaria | 36(8.7) | 350(85.0) | 26(6.3) | | Malaria is not a major problem which pregnant women should worry themselves about. | 53(12.9) | 34(82.5) | 19(4.6) | | Malaria is very common in the area where I live, so I am afraid of getting it | 159(38.6) | 212(51.5) | 41(9.9) | | I can get malaria but it won't affect the baby in my womb | /, | 300(72.8) | 31(7.5) | | The chance of getting malaria in pregnancy is high | 224(54.4) | 148(35.9) | 40(9.7) | ### 4.4: Mularia-related Experiences Respondents' history of experience of malaria is presented in Figure 4. The liqure shows that majority (76.2%) had ever experienced malaria. This table also reveals that 30.1% respondents had 2-4 episodes of malaria within the last six months preceding the study. Only 16.0% said they had more than four episodes of malaria. The mean number of episodes of malaria within the last six months preceding study was 2.4±1.7. The figure under reference also reveals that 47.6% had experienced malaria once during current pregnancy while 27.9% had experienced the disease with 2-4 times during the current pregnancy. The mean number of episodes of malaria experienced during current pregnancy among the respondents was 1.8±1.2. Table 4.15 shows the malaria related preventive practices among respondents. Use of ITN (47.4%) topped the list of the technologies or materials use by respondents to prevent malaria. This was followed by use of drugs (32.9%) which were not specified. Use of herbs was mentioned by 3.9% (See details in table). A question was asked to probe into whether respondents had ever been told about what pregnant woman can use to prevent malaria. The resource are presented in table 4.16. The response of majority (85.4%) was in the affirmative and what they were reportedly told to be using included the following; ITM (65.5%); IPT/malaria drugs (9.7%) environmental sanitation (5%); and insecticide (4.8%). Table 4.17 reveals respondents' sources of information on malaria preventive actions for pregrant women. Health care/facility (80.3%) topped the list followed by mass media (radio/television) (11.7%), religious homes (mosque 'churches) (2.7%). Others sources of information are shown in the table under reference. Number of episode of malaria ever experienced during present pregnancy Fig.4.4: Mularia Related Experiences among the Respondents Q 2 70 C Table 4.15: Malaria Preventive Practices among Respondents | | | N=376 | |--|-----|-------| | Malaria preventive practices | No | % | | Use of net/ITN | | | | Use of drugs | 195 | 47.4 | | Use of herbs | 135 | 32.9 | | Cleaning of the anxisonment with a | 16 | 3.9 | | Cleaning of the environment/cutting of grasses | 10 | 2.4 | | Spraying of insecticides | 8 | 1.9 | | Use of IPT (Intermittent Preventive Treatment) | 8/ | 1.9 | | Nothing at all | 2 | | | Prayer | | 0.5 | | Taking enough rest | | 0.2 | | | 1 | 0.2 | Table 4.16: Responded Awareness of malaria prevention methods. | Awareness Variables | No | 0/0 | |--|----------------|------| | Ever been told about what pregnant women can u | SP 10 page and | | | malaria (N=396) | se to prevent | | | Yes | 352 | 85.4 | | No | | | | What respondents were told to be using to pre- | 44 | 10.7 | | (N=376) | rent malaria | | | Net/ITN | 270 | 68.6 | | IPT/Molario drugs | | 65.5 | | Insecticides | 40 | 9.7 | | Environmental Sanitation | 7 | 1.8 | | | 20 | 5.0 | | Report of case of malaria to health worker | 1 | 0.2 | | Taking fruits | 1 | 0.2 | | Non response | 43 | 17.7 | Table 4.17: Respondents' sources of information on malaria preventive actions for pregnant women | | i | V = 264 | |--|------|---------| | Sources of information on malaria preventive actions | No _ | 64 | | lealth care facility | 212 | % | | Mass media/radio/television | | 80.3 | | | 31 | 11.8 | | Religious homes/mosques/churches | 1 | 2.7 | | arents | | | | | 4 | 1.5 | | nstructional materials/posters | 4 | 1.5 | | Chemists | | | | | 3 | 1.1
 | riends/neighbours | 3 | 1.1 | | | | | # 4.5: Onnership and Use of Insecticide Treated Net among Respondents (88.3%) of the respondents had ever owned an insecticide treated netand 81.8% were having one at the time of study. The proportion of respondents who used a net within the last one month preceding the study was 67.0%. Slightly over half (53.9%) reported that they slept under treated net during the night preceding the study. The sources of ITN among respondents are shown in table 4.19. Majority (84.5%) of the respondents got their nets from Health Centres/Health facilities. Very few (3.7%) obtained nets from markets while 2.4% reported pharmacy/chemist as their source. Respondents' practices relating to the use of ITN are shown in table 4.20. Majority (74.9%) of the respondents used ITN all the time. This is followed distantly by use of ITN when the weather is not hot (12.8%). Only 5.3% used ITN during the raining season. The frequency of use of ITN among the respondents is also presented in the table under reference. Over half (56.6%) used ITN every day, while 29.6% used ITN occasionally. The period of the day when respondents used ITN is also highlighted. A majority (88.6%) used their nets when skeeping at night while just 7.5% reported that they use ITN any time they want to skeep Table 4.18: Ownership and Use of Insecticide Treated Net among Respondents | | | N=412 | | |---|------------|--------------|--------| | (In servicip and I se | | Response | | | Whether ever owned an inserticide treated net | 10(1) | No (36) | NH*() | | | 364(88.3) | 44(10.7) | 4(10) | | Whether currently owned an insecticide treated net | 337(81.8) | A CONTRACTOR | 6(1.4) | | liver used insecticated treated het in pregnancy | 364(7).8) | | | | Whether used investigable treated met during pales | | (21/1) | 9(22) | | pat bucknings | 287(59.7) | 117(28.4) | 8(1.9) | | Whether use insecticide treated net within the last | 12000 | | | | one month | 34161701 | 124(31.3) | 7(1.7) | | Whether slept under the fill mide men met | 222(5), 0) | 181(43.9) | 9(2.3) | ^{*}Non response Table 4.19: Sources of Insecticide Treated Net ever owned by respondents | Sources of net | | N=412 | |--------------------------------|-----|-------| | Health centre/ Health facility | No | %- | | | 348 | 84.5 | | Morket | | | | | 16 | 3.7 | | | | | | Phonnec y/chemist | 10 | 2.4 | | | | | | Others* | | | | | 38 | 9.4 | ^{*} Street hawkers 26(6.3%). Friends 12 (2.9%) Table 4.20: Practices relating to use of Insecticide Treated Nets among Respondents | | | N=412 | | |--|-----|-------|--| | Practices | No | % | | | Time/ period when respondents sleep under net | | | | | All the time | 308 | 74.9 | | | When weather is not hot | 53 | 12.8 | | | During the rain's season | 22 | 5.3 | | | During hurmattan only | 12 | 2.9 | | | Hot period of the year | 8 | 1.9 | | | No response | 9 | 2.2 | | | Frequency of use of insecticide treated net | | 6.6 | | | Every day | 233 | 56.6 | | | Occasionally | 122 | 29.6 | | | Rarely | 28 | 6.8 | | | N'ever use it | 29 | 7.0 | | | Period of the day when usually use insecticide treated net | | 7,0 | | | When sleeping during the daytime | 16 | 3.9 | | | When sleeping at night | 365 | 88.6 | | | Anytime I want to sleep | 31 | 7.5 | | # 4.6: Barrier Factors Relating to the Use of Insceticide Treated Net among Respondents Table 21 highlights barrier factors relating to the use of insecticide treated net amongrespondents. The barrier that topped the list was that ITN generates a lot of heat (51.7%). This was followed distantly by the disclosure that ITN are not readily available in the market (26.5%). The problem of getting in and out of the net during use prevents some respondents (24.2%) from using ITN in the night. Lack of skills relating to the hanging of ITN constituted a barrier to 20.4% of the respondents (See the table under reference for details). Table 4.22 shows the factors which facilitate the use of insecticide treated net among the respondents. Provision of ITN free of charge was a facilitating factor to most (93.7%) respondents. Prevention of mosquitoes bite was a facilitating factor to use of ITN by 96.1% respondents. The other facilitating factors are presented in the table under reference. Table 4.21: Barrier Factors Relating to the Use of Insecticide Treated Net among Respondents N=412 | Barrier related factors | Yes (%) | No (%) | |--|-----------|-----------| | Cost of purchasing mosquito net prevents respondents from using it. | 60(14.6) | 352(85.4) | | Insecticide treated net are not readily available in the market. | 109(26.5) | 303(73.5) | | Insecticide treated net generates a lot of heat | 213(51.7) | 199(48.3) | | Sharing a bed with two or more persons prevents one from using a mosquito net. | 64(15.5) | 348(84.5) | | My sleeping room is full of many items so nowhere to hang mosquito net. | 41(10.0) | 371(90.0) | | Lack of skills in hanging the net prevents people from using the insecticide treated net. | 84(20.4) | 328(79.6) | | Problems of getting in and out of the net prevents pregnant women from using insecticide treated net | 100(24.2) | 308(75.8) | Table 4.22: Facilitating factors relating to the use of insecticide treated net listed by respondents | | | _ | | |---|------------|---|---| | 8 | 1.8 | 1 | 7 | | | | ш | 4 | | facilitating Factors | Responses | | |---|------------|----------| | | Yes (%) | No (%) | | Insecticide treated net are usually given to pregnant women free of charge | 386(93.7) | 26(6.3) | | insecticide treated nets are given to pregnant women at an affordable price | 113(27.4) | 299(726) | | I can hang the net on my own | 361(87.6) | 51(12.4) | | Insecticide treated net protects you from mosquito bite | 396 (96.1) | 16(3.9) | | Insecticide treated net makes one sleep well | 366(88.8) | 46(11.2) | | Insecticide treated net keeps you warm when it is cold | 381(92.5) | 31(7.5) | | Insecticide treated net prevents you from having malaria | 388(94.2) | 24(5.8) | | Husband always encourages you to use insecticide treated net | 368(89.3) | 44(10.7) | | Healthcare workers always advise you to use insecticide | 397(96.4) | 15(3.6) | | treated net | | | | Relatives advise you to use insecticide treated net | 346(84.0) | 66(16.0) | #### CHAPTER FIVE ## DISCUSSION, CONCLUSION AND RECOMMENDATION Majority of the respondents stated erroneously that malaria is eaused by mosquito. This is in controst to the study conducted by Fuge, Ayoato. Gumiano (2015) and Nivele, Ibiam. Onive. Azi, Eze; Obi (2014). (Fuge et al. 2015) for instance conducted their study on the knowledge, attitude and practice relating to malaria and ITNs utilisation among pregnant women in Sharshogo district in Southern Ethiopia. Nivele et al., on the other hand, conducted their study in a General Hospital at Ezza-North LGA, Ebonyi State among mothers relating to malaria transmission. The two studies (Fuge et al; 2015) and (Nivele et al; 2014) revealed that respondents linked transmission of malaria to the mosquito and not that mosquito is a cause. The common belief among people in Bindingry LGA relating to malaria is that the disease is caused by mosquitoes. About a quarter of the respondents correctly listed fever as one of the niajor symptoms of audaria this was followed distantly by mention of general body pains. Those findings are similar to what Abayomi (2015) noted in his study. Abayomi's study focused on the assessment of Malawian mothers' malaria knowledge, healthcare preference and timelines of seeking fever treatments for under-livechildren. This study showed that more respondents identified fever and body ache as some of the symptoms of miniaria. These similarities might be because most people have experienced malaria at one point or the other and as such know the nunjor symptoms of malaria to be sever it is to be noted that the disease is endensic in many pan of Africa South of the Saharan and most people in malorin endemic regions of Africa experience attack of the disease at least once a year. The result that Intra-uterine death and low birth weight are possible health effects of untreated maloria on unborn children is similar to what has been reported in the literature from needs of high transmission of mutaria (Chigozic and Uncke 2007); (Kalanda, Van Buwzen, Verhoell: Barbin, 2005). It is not surprising that respondents correctly reported intra-uterine death and low birth weight as possible adverse effects of malaria. The effect of malana on foctal growth and outcomes constitute vital outcomes of malaria in pregnant women in Africa (Guyatt: Snow, 2004) Majority of the respondents correctly stated that it was true that malaria can be transmitted from mothers to their unborn babies in-utero. This agrees with a lot of studies that have shown that transmission of malaria to unborn babies or congenital malaria exists in sub-Saharan Africa in general and Nigeria in particular (Fischer, 1997; Pengsaa, 2007; Wagner, Kotam, McGuiness, Bennet, Nkrumah and Riley: 1998; Lesi, Mukhtar, Iroha, Egri-Okwaji, 2010). The reason for this might be because patients are thoroughly well aware of the effects of the disease on infants. This may be as a result of effective patient education in the health facility or the various media campaigns embarked upon by health related organisations in Nigeria with respect to the adverse effects of malaria on pregnant women and children. Most respondents stated that they had heard of insecticide treated nets. It was also revealed that all the respondents had heard about long lasting insecticide treated nets. These findings are not very different from what Ukibe. Mbariugo, Ukibe and Ikeakor, (2013) found in a study
which focused on the level of awareness and use of ITNs among pregnant women attending antennatal clinics in Anambra state Nigeria. Ukibe et al; (2013) revealed 93% of the respondents were aware of ITN. The similarity between this study and that of Ukibe et al could be that both studies were conducted in health care facilities where the use of ITN are always encouraged and promoted by health workers. One of the results of this study showed that less than half of the respondents correctly stated that the ITN can be used to prevent malaria. This is slightly different from the findings of the study conducted by Emmanuel Joseph, Kopdima, Mba: Abubakar, (2016). Emmanuel et al. (2016) noted in their study on Malaria prevention among pregnant women in Bauchi State, Nigeria, that majority of the respondents agreed that ITN is a useful tool in prevention of malaria. The difference might be due to the quality of facility-based health education services rendered in the health facilities used. The health facility used in the study by Emmanuel et al; (2016) is a General Hospital which is higher level health facility compared to the Primary Health Care centres used in this study. Therefore it is expected that the quality of Health education provided at the general hospital will be significantly better than that of PHCs. It was noted in the study that less than half of the respondents had good knowledge of malaria and ITN. This is at variance with findings of studies conducted by Adebayo et al: (2015) and Runsewe-Abiodun et al; (2012) which showed that majority of respondents had good knowledge of these concepts. The study by Adebayo et al; (2015) was community based and ledge of these concepts. The study by Adebayo et al; (2015) was community based while the study by Runsewe-Abiodun et al (2012) was conducted in secondary health facilities respectively. It could be that the respondents in the two studies had access to better information about malaria compared to the respondents in this study. ### 5.2 Respondents' perception Mic perception of most respondents was that insecticide treated net (ITN) can prevent mosquito from getting access to an individual. This notion does not necessarily applies that they believe in the efficacy of ITN in the prevention of malaria. In a study conducted inZewdneh, Tadesse and Dawit, (2011) in Ethiopia, it was reported that most respondents believe in the efficacy of ITN in the prevention of malaria. This could be as a result of the several interventions directed towards the reduction of malaria by different bodies in both countries. Majority of the participants did not hold the view that ITNs are only useful during the raining season. This is an appropriate perception; it is a perception that can facilitate the adoption of ITN. However, majority of the respondents had the appropriate perception that ITN should be used by pregnant women whenever they go to bed irrespective of season. This shows that the respondents understand the vital need for the use of ITN every time. This is a real indicator of their favourable perception of ITN and their perceived susceptibility to disease. Majority of the respondents in this study were of the view that malaria was a serious disease for a pregnant woman. This is a perception that is inline with the scientific view. The qualitative study conducted by Mbonye, Neema and Magnussen, (2005) in Uganda similarly revealed that participants were of the view that malaria is a leading cause of ill health among children and pregnant woman, in this study majority shared the view that malaria is not more serious in pregnant woman, than women who are not pregnant. This is an erroneous perception which is at variance with the scientific view. The study by Mbonye et al (2005) revealed that participant were of the view that the fever caused by mosquito was perceived as the leading cause of ill health among children and pregnant women. The praportion of respondents who were of the perception that they could get malaria but that the disease cannot affect their babies in the womb was 19.7%. This perception is not favourable in that it deviates from scientific view. Several studies such as those of Fischer (1997). Pengsaa (2007). Wagner, Koram, McGuiness, Bennet, Nkrumah and Riley (1998). Lesi, Mukhlar, Iroha, Egri-Okwaji-rican digital Health repository project haby in-utero. Malaria infact can lead to aboution Runsewe et al (2012) low birth weight Mwandama et al;(2015). ## 5.3 Malaria-related Experience of respondents The result of this study shows that majority of the respondents had ever experienced malatia. More respondents had 2-4 episodes of malaria within the last six months preceding the study. This is slightly contrary to the study conducted by Omotosho Ibrahim Musa et al. (2009). Musa et al (2009) who conducted their study among women attending antenatal clinic in Nonhern Nigeria, noted that their respondents had experienced at least one episode of malaria in the months preceding the study. More respondents studied by Musa et al however had 2-4 episodes in the months preceding the study. Studies have shown that in endemic areas people experience at least two episodes of malaria in a year Ugwu et al. (2015). The slight difference in the number that had ever experienced malaria might be because the burden of malaria is higher in the southwest where this study was conducted. The similarities in the two studies that more respondents had 2-4 episodes of Malaria attest to the fact that the burden of Malaria is endermic in most part of Nigeria and not that pregnant women are particularly vulnerable. This was followed by the use of drugs which were not specified. Alabi. Olawole, (2012) had a similar finding in the study designed to study the determinants of uptake of ITN among pregnant women in Ado-Odo Ota LGA of Ogun state. Alabi et al (2012) noted that ITN was used by majority of the respondents. The similarity could not be unconnected with the fact that respondents in both studies were receiving anterestal care from health facilities. The patient education received in the health facilities could have positively influenced their reported use of (ITN) Insecticide Treated Nets. The intermittent preventive therapy (IPT) malaria drugs, environmental sanitation and insecticide were the other methods respondents said they had been told to use for preventing occurrence of malaria. In this study, more respondents got their information on the prevention of malatia from health care facilities followed by mass-media (radio/television) and religious homes (raosques/churches). This is in congruence with the findings of Fuge et al (2015). Fuge et al (2015) also noted that more respondents got their information from health facilities. This similarity might be connected with the fact that respondents in the two studies were programs women who receive patient education on a variety of health-related issues during antenatal care. # 5.4: Ownership and Use of Insecticide Treated Nets among Respondents Majority of the respondents had ever owned an insecticide treated net. Similarly, most of the respondents had a net at the time of study. This is similar to the study by Sangare, et al (2012) which revealed that 72% of the women in the study owned an ITN. This may be because respondents in both studies were conscious of their vulnerable state of being pregnant. The motherly instinct to protect the transmission of the disease to the baby might also be a factor. Slightly over half reported that they slept under treated net during the night preceding the study. This is higher compared to the figure reported in the Multiple Indicator Cluster Survey for Nigeria (National Bureau of Statistics (NBS, 2011) and the National Demographic Health Survey. (NPC, 2014); the figures obtained from these two surveys were below half. The reason for the disparity might be due to the nature of the surveys that this study is been compared with. The latter were national surveys while this study was recently conducted compared to the other surveys and as such the figures might have improved. Majority of the respondents got their nets from health centre/health facilities. Very few obtained nets from markets and pharmacies. Health centres have always been utilised as the vehicle for the dissemination of important health innovations such as those relating to ITN. The reason for this is that some of these innovations are more affordable through the health care centres because most times it is subsidised to encourage ownership and usage. Majority of the respondents used ITN all the time. Over half use it everyday and majority use their net when sleeping at night while very few reported that they use ITN anytime they want to sleep. These findings are contrary to the findings of obtained by Fuge et al (2015) which showed that more than half of the respondents who owned ITN used them poorly. The pattern of use of ITN by the respondents needs to be improved upon. What is desirable is universal adoption and regular use of ITN by pregnant women. # 5.5 Factors Relating to the Use of Insecticide Treated Net among Respondents The major barrier factor relating to the use of 17N among respondents in this study was identified to be heat Previous studies have shown that the factors which militate against regular use of 17N include heat Kareera et al (2015) and Awosan et al (2013). A study conducted by Sangare, Weiss, Brentlinger, Richardson, Staedke, Kiwuwa; Stergachis, (2012) in Jinja Uganda similarly revealed that heat was a reported barrier to the use of the technology. Sangare et al (2012) conducted their study on determinants of use of ITNs for the prevention of malatia in pregnancy among women who had ever been pregnant. The teason for this similarity may not be unrelated to the fact that the weather in Africa is generally hot compared to other continents and it has always been noted that the ITN adds to the existing heat during
usage. It was also noted in this study that the problem of getting in and out of the net during use prevents some respondents from using ITN in the night. This amounts to inconvenience which bas also been documented as a factor by Sangare et al (2012) The major factor which promotes the use of ITN among the respondents was provision of product free of charge. This is similar to the findings obtained by Grabowsky. Nobiya. Scianikio (2007) who conducted an intervention relating to the coverage of ITN in Ghana. It was noted by them that mass distribution of ITNs and routine provision of the product or subsidized vouchers for ITNs to pregnant women increased ownership and usage in intervention areas. Similar studies by Agha. Van Rossem, Stallwotthy: Kusanthan (2007), Maxwell, Rwegoshora, Magesaand Curtis (2006) and Pettifor, Taylor, Nku, Duvall, Tabala et al (2008) have also shown that provision of ITN and other related preventive materials facilitate usage among the public. ### 5.6 Implications of the results for Health Promotion and Education There are several health implications of the lindings of this study for health promotion and education. The identified gapsin knowledge can concerted through educational interventions. Ilealth promotion and education is concerned with the adoption of innovations aimed at promoting, protecting and maintaining people's health. Health education principles and strategies that can been used in promoting good health include, effective communication or public enlightenment, community organization/development, social marketing, partnership, policy formulation and implementation, use of multiple interventions, use of local resources, conduct of evidence-based interventions, social support, training and advocacy. The major gap in knowledge identied in this study was the inadequate knowledge of malaria among respondents. The identified health promotion strategies that could be used to address the challenges noted in this study are training and public enlightenment. These strategies are succinctly discussed as follow starting with training. #### Training Training can be inform of a workshop or a seminar/a conference. A proper training curriculum could be developed to help facilitate the educational process. Training could be initiated by the Government in all Primary Health Centres like the one in which this study was conducted. An andragogical approach is most preferred as the target population consists of adults. A proper set of measurable objectives should be formulated to facilitate the design and evaluation of the training intervention. Experience has shown that training can be effectively used to facilitate the adoption of 1TN. Runseve et al(2012) and Megha et al (2013). It is a strategy which has great potential in upgrading the study population's knowledge relating to malaria and ITN and enhance their capacity to adopt the appropriate preventive majors including use of 1TN. #### Public Enlightenment Public Enlightenment is a useful strategy for facilitating the diffusion of innovations. Public enlightenment could involve the use of behavioural change communication materials like posters radio and television to disseminate information relating to the advantages of using ITN among pregnant women. Public enlightenment can also be used to tackle the misconception associated with the use of ITN. The messages to be passed across should be designed to appeal to the characteristics of the target population. Well trained public health professionals particularly in the lield of health promotion and education could be engaged to design these messages. Educational materials such as well-designed pamphlets designed in both English and Yoruba language could also be made available to pregnant women to take home and read. This is more so because a sizeable proportion of the study population is literate. The messages conveyed by the pamphlets can be deseminated to persons with no formal education through the radio and television using the Yoruba language that is predominantly spoken in the study area. #### 5.7. Conclusion Knowledge of mahaia was poor among majority of respondents. There were misconceptions among the study participants relating to malaria especially in terms of the causauve agent for the disease. However their level of awareness about ITN and LLIN was high among majority afficant distances. of the respondents. Respondents had favourable perceptions of malaria in terms of vulnerability and seriousness of the disease. Most respondents had experienced episodes of malaria prior to the conduct of the study. Insecticide treated nets ranked first among the methods used by the participants to prevent the occurrence of malaria. Heat was, however, cited as a key factor that serves as a disincentive to the use of ITN. Health promotion strategies such as training and public enlightenment can be used to address the identified gaps in knowledge and misconceptions among pregnant women relating to malaria and the ITN. This will particularly promote the adoption of ITN and the initiation of other malaria related prevention measure. #### 5.8 Recommendations The following recommendations are made based on the findings of the study. - 1. Patient education provided during ANC in the study facilities should include upgrading expectant mothers with knowledge of plasmodium as the acnul pathogen that causes malaria while the mosquito merely serves as the agent that helps transmit the pathogen from person to person. - 2. The hanging and use of ITN should be taught as part of the routine ANC services for expectant mothers using active training methods such as demonstration and return demonstration. - 3. Health workers should continue to reinforce health education message during ANC services relating to importance of ITNs to pregnant women. - The concerns raised by the study panicipants relating to the heat and inconveniences associated with the use of ITN, should be noted for possible product modification by technologist/innovators. - Adebayo, A.M. Akinyenii.O.O and Cadmus, E.O. (2015). Knowledge of malaria and prevention among pregnant women and female caregivers of under-live children in rural south west Nigeria. Peer J.3: E792.attending antenatal clinics in a rural local government area in southern Nigeria. - Adeyemo, M.O.A. Oluvatosin O.A. Amodu O.K., Taofeeq, Y.O. (2014). Home management and prevention of malaria among under-live children: Expenences of Mother in a Nigerian Local Government Area, Afr.J. Biomed. Res. 73:83-91. - Agha, S. Rossem, V.R. Stallworthy, G. And Kusanthan, T. 2007. The impact of hybrid social marketing intervention on inequities in access, ownership and use of insecticide treated nets, Malaria Journal. 6:13 - Akande T.M.; Musa 1.O. Epidemiology of Malaria in Africa, Afri J Clin experiment 2005:9: - Akinyele S.O; Ajayi I.O. (2012) knowledge of malaria and preventive measures among pregnant - Ambrose E. (2011); Knowledge, attitudes and practices regarding malaria and mosquitonet use among women seeking antenatal care in tringa, South-western Tanzania. - Anna M van Ejik, Jenny Hill, Sue Povall, Alison Reynold, Helen Wong, and Feiku O Ter Kuile. (2012) The malaria in pregnancy library, a bibliometric review, malaria journal 2012, 11:362 - Anstey NM. Russell B. Yeo TW. Price RN. The pathophysiology of vivax nuclaria. Trends Parasitol 2009;25:220-7, doi:10.1016/j.pt.2009.02.003. - Arcry JW, Smith GM. Owrno SO, (2012) Maternal malariareduces a procoagulant and antilbrinolytic state (2012) journal pone - Augustine Ankoniah. Samson B. Adebayo (2012), BMC Public Health (2012) Determinants of Insecticide Treated Net ownership and utilizationamong pregnant women in Nigeria. - Avose T. Ola (1938); A short history of Badagry. Ife Olu Press (1938) - Awosan, K. J., Ibrahim, M. T. O., Alayande, M. O., Isah, B. A., Yunusa, E.and Mahmud, M. B. (2013). Prevalence and barriers to the use of insecticide treated nets among pregnant women attending ante-natal clinic at Specialist Hospital Sokoto, Nigeria. Journal of Public Health and Epidemiology. 5(10): 416-420. - Baume CA. Marin MC (2008): Ganis in awareness, ownership and useof insecticide treated nets in Nigeria, Senegal. Uganda.and Zambia (2008): Pub. Med. Centre view Article Pub Med Google scholar. - Belay M. Deressa W (2008): Use of insecticide treated nets by pregnant women and associated factors in a pre-dominantly rural population of nonhern Ethiopia Trop. Med. Int. Health 2008. - Benneth A. Smith SS (2012), Ownership and use of Insecticide treated nets in pregnancy. - Bernejo A; Vecken H. (2010) Insecticide impregnated bed nets for malaria control. A review of the field trials. - Binka FN, Adongo P (1997). Acceptability and use of insecticideimpregnated bednets in northern Ghana. Trop med. Int. Health 1997:2(5)499-507 - Breman JG, Alilio MS, Mills A (2004) Conquering the intolerable burden of malaria, what s newwhat's needed a summary. Am J Trop Med Hyg 2004. - Cheng Y. Shin Ell. Lu F. Wang B. Choe J. Tsuboi T. et al. Anugenicity studies in human and immunogenicity studies in mice an MSPIP subdomain as a candidate for malana vaccine development. Microbes infect 2014.16:419.28 Doi: 10.1016/j.micinf.2014.02.002. [PubMed][Cross-Ref] - Chigozie J. Uncke. (2007) Impact of Placental Plasmodium falcipurum malaita on pregnancyand perinatal outcome in Sub-Saharan Africa. Yale J Biol Med 80. 39-50 - Deresse W. Fentie G. Guima S. Ringer (2011); Ownership and use of insecticide treated nets inpregnancy. - Desai M. ter Kuile FO. Koster F. Ma Gready R. Asamba K. Brabin B. Newman RD (2007) - Dhiman S. Yudark. Goswami D. (2012); Epidermiology and RiskAnalysis of malaria among pregnant women Iran J. Public Health. 2012; 14. - Dyson Miwandama, Julie Gutman, Adam Wollion, Madalitso Luka (2015) the use of intermittent preventive treatment in pregnancy and insecticide treated bed nets for malaria prevention by women of child bearing age in eight district in
Malawi. - Egwu E.O., PC Ezechukwu, SN Obi, A. O Ugwu, TC Okcke (2015): Utilization of insecticide treated nets among pregnant women in Enugu, South Eastern Nigeria. - Essele TP; Keating J, Littrell M.I. Arsen D. Macintyre K (2009); Assessment of insecticide treated bednet use among children and pregnant women across 15 countries using standardized national surveys; Am J. Trop. Med Hyg (2009). - Prevention among Pregnant Women in Bauchi state, Nigeria: Knowledge and Utilisation of Insecticide-Treated Nets. Open Science Journal of Clinical Medicine. 4(1): 1-4 - Epidemiology and burden of malaria in pregnancy. Laucet infect Dis 7:93-104 - Fredrick Kateera, Chania M. Ingabire, Emmanuel Hakizimana, Alexis (2015: Long Lasting Insecticide net source, ownership and use in the context of universal coverage: a household survey in eastern Rwanida - Fuge G., Samuel Y. Ayanto, Fischa L., Gurmamo (2015) Assessment of knowledge, attitude and practice about malaria and Insecticide treated nets utilization among pregnant women in Shashogo District, southern Ethiopia. - Getting PW, Casey DC, Weirs DS, et al. Mapping Plasmodium Talciparum mortality in Africa between 1990 and 2015 N Engl J med2016; 375 2435 - Deresse W. Fentie G. Guinta S. Ringer (2011); Ownership and use of insecticide treated nets inpregnancy. - Desai M, ter Kuile FO. Koster F, Ma Gready R, Asamba K, Brabin B, Newman RD (2007) - Dhiman S, Yadark, Goswami D, (2012), Epidenniology and RiskAnalysis of malaria among pregnant women Iran J. Public Health. 2012; [1. - Dyson Miwandama. Julie Gutman, Adam Wolkon, Madalitso Luko (2015) the use of intermittent preventive treatment in pregnancy and insecticide treated bed nets for malaria prevention by women of child bearing age in eight district in Malawi. - Egwu E.O., PC Ezechukwu, SN Obi, A. O Ugwu, TC Okcke (2015): Utilization of insecticide treated nets among pregnant women in Enugu, South Eastern Nigeria. - Eiscle TP; Keating J, Littrell M.I. Alsen D. Macintyre K (2009); Assessment of insecticide treated bednet use antong children and pregnant women across 15 countries using standardized national surveys; Am J. Trop. Med Hyg (2009). - Prevention among Pregnant Women in Bauchi state, Nigeria: Knowledge and Utilisation of Insecticide-Treated Nets. Open Science Journal of Clinical Medicine. 4(1): 1-4 - Epidemiology and burden of malaria in pregnancy Laucet infect Dis 7:93-10-1. - Fredrick Kateera. Chanta M. Ingabire, Emmanuel Hakizimana, Alexis (2015: Long Lasting Insecticide net source, ownership and use in the context of universal coverage: a household survey in eastern Rwamda. - Fuge G., Samuel Y. Ayanto, Fischa L. Gurmamo (2015) Assessment of knowledge, attitude and practice about malaria and Insecticide treated nets utilization among pregnant women in Shashogo District, southern Ethiopia. - Getting PW. Casey DC. Weirs DS, et al. Mapping Plasmodium l'alciparum mortality in Africa between 1990 and 2015. N Engl J med2016; 375 2435 - Guerra CA. Gikandi PW, Talem AJ, et al. The limits and interesting of plasmodium salciparum transmission insplications for malaria control and elimination worldwide Plos Med. 2008; 5: c 38. - Katey D. Ana Paula Abilio, Quique Bassat, Heldez Bulo: (2015) Long Glunt Lastinginsecticidal nets no longer effectively kill the highly resistant Anopheles funestus of southern Mozambique. - Gross, K., Alba, S., Schellenberg, J., Kessy, F., Mayumana, I. and Obrist, B. (2011). The combined effect of determinants on coverage of intermittent preventive treatment of malaria during pregnancy in the Kilombero valley, Tanzania. Malaria Journal 10: 140. - Gu W. Nerak RT. (2009) Predicting the impact of insecticidetreated bed nets on malaria transmission: - Guyatt IIL and Snow RW (2004) Impact of Malaria during Pregnancy on Low Birthweight inSub-Saharan Africa. Clinical Microbiology Reviews 17: 760-769. - Hawley WA. ter Kuille FO, Steketee RS, Nahlen BC Terlouw DJ, Gming JE, et al; **Implications** - Heggerhongen IIK, Hackenthral V, Vivek P (2003) Bednets usage and it acceptance at thelocal level. The bahaviour and social aspect of malana control an introduction and anmotated biography Gereva; Special Programme for Research and training in Tropical Disease (TDR) World Health Org. 3 (1) 97-106 - llerrera S, Corradin G. Arcvalo-I lerrera M. An upilate on the search for a plasmodium vivax Trends Parasitol.2007,23,1228 doi: 10.10.1016/j.pt.2007.01.008. vaccine. [PubMed][Cross Re[] - Higgins JPT, Green's (2011) Handbook forsystematic Review of Intervention (version 110) the Cochrane collaboration (2011) Part 3: Special Topics - Hill J Lines J. Rowland M (2006), Insecticide treated nets advances. Parasitol 2006: 61'77-128 - Jelinek T (2005). Intravenous-atesusate for treatment of patients with severe malaria position statement of Trop. Net Europe, Berlin. (2005) Institute of tropical medicine. AFRICAN DIGITAL HEALTH REPOSITORY PROJECT - Kalanda. B F. van Buuren, S. Verhoeff, F H. Brubin, B J. (2005) Anthropometry of fetal growthin rural Malawi in relation to maternal malaria and HIV status. Archives of Disease in Childhood Fetal & Neonatal Edition 90:F161-F165. - Kate Macintyre (2011): Determinants of hangingand use of ITNs in the context of near universal coverage in Zambia - Katecza (2015); Long Lasting insecticidal net source, ownership and use in the context of universal coverage: a household survey in eastern Rwanda. - Kayentao K. Gemet P. van Eijk AM, (2013); Intermittent preventive therapy for malaria during pregnancy (2013) systematic review and meta-analysis - Killeen G.F., Smith, T.A., Ferguson, H.M., Mshinda, H. Abdulla S. Lengelca, C. and Kachur, S.P. (2001) preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLos Medicine.4 (7): 1246-1258 - Lawra R. Sangare Nocls, Weiss, Paula E., Brentlinger, Barbra A., Richardson (2012) Determinants of the use of insecticide treated netsfor the prevention of malaria in pregnancy Jinja Uganda. - Lengeler C, de savigny D (2007). Programme diversity is key to the success offnsecticide treated bednets. Lancet 2007; 370 (95 92): 1009-10 - Lukman O. Omokanye, Rakiyo Saidu; Abdul Waheed O. Olatinwo; (2012) The determinants of utilization of insecticide treated nets among pregnant women anending antenatalClinic at University of Ilorin Teaching Ilospital Ilorin - Malar J (2013): Ownership and use of insecticide ireated nets during pregnancy insubscharan Africa. 12:268. - Mandal S Epidomiology aspects of vivax and falciparum malaria global spectrum. Asia Pacific J Trop Dis. 2014;4:S13-26. Doi 10.1016/S2222-1808(14)60410-2 [Cross Ref] - Manthanga DP: Luman ET, Campbell CH, Silwinba Malenga G (2009) Integration of insecticide treated net distribution into routine immunization services in malaria: a pilot study Tropical Med. Int. Health (2009) 14 792-801 - Maria Widmar courtiey J Nagel. Deborah Y. Ho., Peter W. Benziger and Nils Hennig (2009): Determining and addressing obstacles to the effective use of long-lasting insecticide-impregnated nets in tural Tanzania. - Megha Singh, Graham Brown, and Stephen J. Rogerson (2013); Ownership and use of Insecticide treated nets during pregnancy in Sub-Saharan Africa - MesewakuBabatunde Olaide. (2001). Badagry District: 1863-1999, published by John West - Michon P. Fraser T. Adams JII. Naturally acquired and vaccine-clicited antibodies block erythrocyte cytoadherence of the plasmodium vivax Duffy binding protein. Infect Immun. 2000;68:3164-71. doi: 10.1128/IAI.68.6.3164-3171.2000. [PMC free article][PubNed][Cross Ref] - Mussa Sclaimani Alunadi, Hassan Vutan doost. Mansorch Shaeghi. Alunad Raeisi, Farshid Abedi (2011): Effect of Educational intervention on ITN, use in a malarious area. Southern Iran. - Mwandama and Malar J (2015) 14:316; The use of intermittent preventive treatment in pregnancy and insecticide treated bed nets for malaria prevention by women of child bearing age in eight districts in Malavi. - Napoleon R P (2011): Preventing malaria during pregnancy: factor determining the use of insecticide treated bed nets and intermittent preventive therapy in Juba. Southern Sudan medical journal 2011, 4:33-35 - National Malaria Control Programme (NMCP) Malawi and ICF International (2012) Malawi Malaria Indication Survey (MIS) (2012) NMCP and ICF International, Lilongwe - Nebie I, Diarra A, Quedraogo A, Tiono AB, Konate AT, Gansane A, et al Humoral and cell-mediated immunity to MSP3 peptides in adults immunized with MSP3 in malaria endemic area, Burkina Faso, Parasite Immunol.2009;31:474-80. doi: 10.1111/j.1365-3024.2009.01130. - NICE CKS. Malaria prophylaxis Feb (2012) UK access - Njau RJA de Savigny D. Gilson L. Mwagani E. Mosha FA (2009) Implementation of an insecticide ireated neisubsidy scheme under a public privateputnership for malaria control in Tanzania (2009) challenges in implementation - Nosten F. McGready R. Mytabingwa T (2007): Case management of malaria in pregnancy Lancet Infections Disease - NPC. ICF Macro (2009) Nigeria Demographic and Health Survey of 2008, Abaja, Nigeria; National Population Commission and ICF Macro. - of the Western Kenya permethrin-treated bed net study for policy, program implementation, and future research. Am J Trop Med Hyg (2003), 68:168-73 (Pub. Med). - Omotosho Ibrahim (2010): Awareness and use of insecticide treated netsamong Pregnant women attending ante-natal clinics in a northern state of Nigeria. - Ordinioha B. (2012) The use and misuse of mass distributed free insecticide treated bed nets in a semi-urban community in Rivers State Nigetia. Ann Afr. Med 2012 11:163-168. - Oyekale, A.S. (2015). Assessment of Malawian mothers' Malaria Knowledge, Healthcare Preferences and Timeliness of seeking fever treatment for children under-five. Int. J. Environ. Res. Public Health 12:521-540 - Phillip Howard PA, Stellen R, Kem L. Vanhauwere B. Schildknecht J. Fuchs E. (1998): safety of methoquine and other antimalatial agents in the first trimester
of pregnancy Publications Ltd (2001). - Pullford J. Hatzel MW. Bryant M. Siba PM. Mueller I (2011), Reported reasons for not using a mosquito net when one is available, a review of the published literature. Malar J. 2011.10:10 - Resolution WIIA 58.2 Malaria control in fifty-eight World Health Assembly, Geneva 16-25 May 2005 Resolution and decisions, Annex Geneva World Health Organisation 2005 - Rhee MS. Akanmori BD. Waterfall M. Riley I M. Changes in cytokine production associated with acquired immunity to Plasmodium Sulciparum malaria. ClinExplimmunol. 2001;126:503-10. doi: - Riley EM. Morris-Jones S. Blackman MJ. Greenwood BM. Holder AA. A longitudinal study of naturally acquired cellular and humoral immune responses to a merozoite surface protein (MSP1) of *Plasmodium falciparum* in an area of seasonal malaria transmission. Parasite Immunol. 1993, 15:513-24. 10.1111/j.1365-024.1993.1500639 x. [PubMed][Cro. 1 Res] - Ruasewe-Abiodun (2010): Awareness and knowledge about insecticide treated nets (17Ns) amongst pregnant mothers in Ogun State, western-Nigeria. Dept. of Paediatries. Olabisi Onabanjo University Teaching hospital, OOU, Sagamu-Ogun State - Runsene-Abiodun, 1. I., Iyaniwura, A. C. and Sotimchin, S. A. (2012). Awareness and Knowledge about Insecticide Treated Nets (ITNs) amongst pregnant mothers in Ogun State. Western-Nigeria: A descriptive Cross-sectional study. Education Research Journal 2(5): 138-145. - Sangare L R, (2012) Determinants of use of insecticide treated net for the prevention of malaria in pregnancy. - Singh. Desai M., Eiselle TP (2013) Malaria journal http://www.malaria journal.com/content/12/1/268. - Skarbinski J. Mwandama (2011) Impact of health facility based insecticide treated bed netdistribution in Malawi. - Sorensen Gilmour (1995) The commercial and political system of a Lagoon side community - Takem EN, D'Alessandro U; Malaria in pregnancy. Mediterz J. Hematol Infact Dis. (2013)(1): Epub 2013 Jan 2. - Thomas Mbago (2014) Factors associated with utilization of insecticide treated nets amongpregnant women in notthern region Namibia. - Tongo O.O. Onmadegun A.E. Akinyinka O.O. (2011); Utilization of malaria preventive measures during pregnancy and bith outcomes in Ibadan Nigena BMC pregnancy child bith 2011, 11.60 - Tusting L. Thwing J. Sinclair D. Fillinger U. Gimnig J. (2013) mosquito larso source management for controlling malaria. Cochrane Database of systematic Review - Ugwu, PC Ezechukwu, SN Obi, AO Ugwu, TC Okeke (2015) utilization of insectic de treated nets among pregnant women in Enugu South Eastern Nigeria. - Ukibe, S. N., Mbanugo, J. I., Ukibe N. R. and Ikeakor, L. C. 2013. Level of awareness and use of insecticide treated bed nets among pregnant women attending antenatal clinics in Anambra State, South Eastern Nigetia. Journal of Public Health and Epiclemiology, - Valizadeh V. Zakeri S. Mehrizi AA, Djadid ND. Population genetics and natural selection in isolates. Infect Genet Evol. - Van Ejik et al; Malaria Joumal (2012); The malaria in pregnancy Library: a bibliometric - Wipasa J. Elliott S. Xu H. Good MF. Immunity to asexual blood stage malaria and vaccine approaches. Immunol Cell Biol. 2002;80:401-14. doi: 10.1046/j.1440-1711.2002.01107-x. [PubMed][Cross Ref] Women attending antenatal clinics in a rural local government area in southern Nigeria. - WHO World Global Malaria Control and Elimination: report of a technical review 17-18 January 2008, Geneva, PP, 1-47. - World Health Organisation (2011) Global Malaria Programme, World Malaria Report Geneva Switzerland. - World Health Organisation (2012) Handbook for Integrated vector management. Geneva: World Health Organisation. - World Health Organisation (2013) World malaria Report 2013, Geneva: WHO - World Health Organisation (WHO); Scaling up insecticide-treated netting programmes in Africa. WHO Roll Back Malaria. World Health Organisation 2007; pp6-18. - World Health Organisation UNICEF: The Assica Malaria Report for year 2003, p9-29 - World Health Organisation: World Malaria Report 2015, Willo. Geneva 2015, http.www. who.int/nsalaria/publications/world_malaria_report_2015/report/en/(Accessed on August 01, 2016). ## APPENDIX I QUESTIONNAIRE UTILISATION OF INSECTICIDE TREATED NETS AMONG PREGNANT WOMEN ATTENDING PRIMARY HEALTH CENTRES IN BADAGRY LOCAL GOVERNMENT AREA, LAGOS NIGERIA Dear respondent I am a post-graduate student of the department of Health Promotion and Education, faculty of Public Health, University of Ibadan. You have been selected to participate in the research on Utilisation of insecticide treated nets among Pregnant Women Attending Primary Health Centre in Badagry Local Government Area. Your consent to participate and give full, honest and correct information will be appreciated and kept confidential. I will be asking you the questions and necessary explanations will be made for you to understand the questions. Thanks for your cooperation. #### Section A: Socio-Demographic Characteristics Instruction. Please tick (VI) which ever molies to espandents in Objection 1-6 or complete | - | | |-----|--| | the | appropriate spaces as the case may be | | | | | 1. | Martial Status 1. Single 2 Married 3. Divorced | | | 4. Widovved 5. Schararted Dther (Please Specify) | | 2. | Religion: 1. Christianity 2.Islam3.7 tional | | | Other (Please Specify) | | 3. | Your age as at last birthday (in years) | | 4. | What is your ethnic group? I Ilausa oruba 3 | | | 4. Other (Please Specify) | | 5. | Highest educational qualification 1 No Fonnal Education Trimary School | | | 3 Secondary School 4 NCI OND LIHND LISCHAUBED | | | 8 Master 9 Other (Se Specify) | | 6. | Occupation: 1 Unemployed 2 Petty trading 3 Civil Servant | 4 Other (Please Specifi AFRICAN DIGITAL HEALTH REPOSITORY PROJECT | Instru | Section B: Pregnancy and Fertility History Letion: In this section please complete the open spaces or tick (2) the alternative responses that apply to the respondents | |--------|--| | 7. | For how many months have you been pregnant? (Gestational age in months) | | 8. | How many children do you have as at today? | | | on C: Awareness and Knowledge Relating to Malaria and Insecticide Treated Nets uction: In this section please complete the apen spaces or tick (2) the alternative responses that apply to the respondent | | 9. | What do you think is the real cause of malaria? (Mention only one) | | | 01010,0401000,0000000000000000000000000 | | 10. | Please tell me 3 major symptoms of malaria. | | | (i) | | | (ii) | | | (iii) | | 11. | Mention three (3) possible health effects (or dangers) of untreated malaria for a | | | piegnant woman. | | | (i) | | | (ii) | | | (iii) | | | | | 12. | Mention three (3) health effects (or dangers) of malaria on the unborn child (i.e. the | | | child in the womb). | | | (i) | | | (ii) | | | (iii) | | 13. | | | | womb? 1. True 2 False 3. Caunol sa) | | 14. | Which of the following groups of people more readily get malana? (lick (*) all you | | | consider correct). 1 Under live Children Children with sickle cell andemia | | | 3. Pregnant women Young Persons All adults 6. \ Drs from America | | | 7. Ople that live beside a river 8. Other case Specify) | | 15. | The first incoming in the control of | | 16. | | | 7. | Mention (Wo (2) benefits of using an insecticide | treated net | | | |------|--|-------------|---------------------|-------------------| | | (a) | | | | | | (5) | ********* | *********** | + 4 4 6 6 4 4 9 9 | | 8. | Malaria cannot lead to abortion. 1. True 2 | False | 3 Don't Know | | | 9. | Malaria cannot in any way lead to shortage of bi | ood i To | e 2 Folso | 7 | | | 3. Don't Know | | Z. Talset | | | 0. | Experiencing repeated episodes of malaria can | lead to th | c birth of a baby | with low | | | birth weight. 1. True 2. False 3. | Don't Kno | w | | | 1. |
Malaria cannot in any way lead to miscarriage. | I. True | 2.False | | | | 3. Don't Know | | | | | 2. | Malaria can lead to sebrile convulsion. 1. True | 2. F | 3. Don | Know 🔲 | | .3. | Malaria cannot lead to a reduction in the an | nount of w | ork which one us | sually do. | | | 1. True 2. False 3. Don't Know | | | | | | | | | | | | Section D: Perception relating to In | secticide 7 | reated Net | | | 4. | The table below contains a list of statements | relating to | perception relating | g to use of | | | insecticide treated net. For each statement, ple | se tell me | whether you agree | with it or | | | not. If you are not sure about the statement ple | ase tick (|) undecided/no opi | inion | | | | Agree | Undecided/no | Disagree | | S/N | Statement | | Opinion | | | 24.1 | Mosquito nets not treated with | | | | | | insecticideare safer than those with | | | | | | insecticides | | | | | 24.2 | Insecticide treated net cannot stop | 5 | | | | | mosquitoes from biting someone | | | | | 24.3 | Taking 'agbo 'or herbal medicines | 19/11 | | | | | regularly protect people from malaria than | | | | | | using an insecticide treated net | | | | | 24.4 | | | | | | | preventing mosquitoes during the raining | | | | | | DIE TEILINE MOSQUIIOSS QUINE UIC IQUIIIE | | | 11 | | | | | | | | 24. | scason. | | | | is bigger or large. | 24.6 | Mosquito net can suffocate one when sleeping under it. | | |-------|--|--| | 24.7 | Sleeping under mosquito net does not allow one to sleep well. | | | 24.8 | Use of insecticide treated net throughout pregnancy can harm a pregnant woman. | | | 24.9 | Sleeping under mosquito net makes one to sweat because it generates heat. | | | 24.10 | Pregnant women should only use insecticide treated net when they are in their 3 rd trimester. | | | 25. | Insecticide treate | d net cannot prevent malaria. Please tick (*) any one | |-----|--------------------|---| | | 1. Agree | | | | 2. Disagree | | | | 3. Undecided | | | | 4. No response | | #### Section E: Perceived Seriousness and Vulnerability to Malaria The table below contains a list of statements relating to vulnerability, seriousness of malaria and insecticide treated net use. For each statement, tell me whether you agree with it or you disagree with it. If you are not sure about it please tick (<) undecided/no opinion | S/Na | Statement | Agree | Undecided/
no opinion | Disagree | |------|---|-------|--------------------------|----------| | 26.1 | Malaria is not a serious disease for pregnant wonten | | | | | 26.2 | Malaria is not more serious in pregnant women than women who are not pregnant | | | | | 26.3 | Malaria is a mild disease | | | | | 26.4 | believe I can never get malaria | | | | | 26.5 | Malaria is not major problem which pregnant women should worry | | | | | | themselves about | | |---------|--|--| | 26.6 | Malaria is very common in the area where | | | | l live so I am assaid of getting it | | | 26.7 | I can get malaria but it won't affect the | | | | baby in my womb | | | 26.8 | The chance of getting malaria is high | | | tructio | | | | | responses that apply to the respondent | | | Ha | ave you ever experienced malana? I. Yes 🔲 🛂 | No 🔲 | | | No response | | | | s far as you can re-collect how many episodes of ma | laria did you experience within | | | c last six months? | | | Но | ow many cases of malaria have you ever experience | d during this present pregnancy? | | 9019 | ************************************** | *····· | | . 11 | What do you commonly use to prevent yourself from | having malaria (mention as | | m | nany as possible) | | | | | · | | ••• | *************************************** | 1,1741414101041464164444444444444444444444 | | • • • | *************************************** | ******************************** | | | | | | | SECTION G: Treatment and Prevention | n-related Issues | | structi | ion: In this section, please complete the open s | paces or tick (图) the alternative | | | responses that apply to the responder | nt. | | | | | | l. F | Have you ever been told about what pregnant women | in should be using to prevent | | n | malaria? 1. Yes 2. No (If No. | go to 34a) | | 2. 1 | If yes to Question 31, what were you told pregnant v | voman can use to prevent malaria | | | | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | | | ************************************** | ******************************* | | | AFRICAN DIGITAL HEALTH REPOSITORY PROJ | ECT | | preve | nt malaria? | | | |-----------------------|---|-----------|------------| | ******* | 614180 - 1004 PG40 1177-4064 EGG 4 8-644 EG - 4444 FF-4 FG40 GG - 4446 FG40 FG40 FG40 FG70 FG70 FG70 FG70 FG70 FG70 FG70 FG7 | , | | | 4,044,1 | 015900000000015190106660191900000191808100, priddb | | 1007000000 | | | | | | | | Section II: Ownership and use of Insecticide Treated No | is. | | | . The | table below contains questions relating to insecticide treated | | ach tick | | (4) | Yes of No as it applies to the respondent | | | | S/Ne | Statement | Yes | No | | 34a.1 | Have you ever owned an insecticide treated net? | | | | 34n.2 | Do you currently own an insecticide treated nel? | | | | 34a.3 | Have you ever used insecticide treated net in pregnancy? | | | | 34a.4 | Did you use insecticide treated net during your last pregnancy? | | | | 34a.5 | Did you use insecticide treated net within the last one month? | | | | 34a. 6 | Did you sleep under the insecticide treated net last night? | | | | sur
1.
2.
3. | you have ever owned an insecticide treated net. from when oply? (Tick all that apply) Health centre Buy from market Buy from pharmacy/chemist Others please specify | c did you | get you | | | Section 1: Practices Relating to Use of Insecticide Trea | ted Net | | | astruction | on; In this section, please complete the open spaces or tie | | alterna | | | responses that apply to the respondent, | | | | | | | | | 35. W | then do you sleep under insecticide treated net? (Tick D only | one) | | | | 2. During harmattan only | |-------|---| | | 3. Ilot periods of the year | | | 4. All the time during raining, harmattan and hot periods of the year | | | 5. When weather is not hot | | | 6. I do not use it | | 36. | How often do you use an insecticide treated net? 1. Everyday 2. | | Occas | sionally 3. Hally 4. Na | | 37. | During which period of the day do you usually use insecticide treated net? | | | 1. When sleeping during the day 2. When sleeping in the night | | | 3. Anytime I want to sleep | | | | | | Section I: Barrier Fuctors Relating to the Use of Insecticide Treated Net among | ## Pregnant Women Instruction: In this section, please complete the open spaces or tick (2) the alternative responses that apply to the respondent. 38. The table below contains statements on barriers relating to use of insecticide treated net among pregnant women. For indicate and tick (*) "Yes" or "No" as it affects you. | S/N _t | Statement | Yes | No | |------------------|--|-----|----| | 38.1 | Cost of purchasing mosquito net prevents you from owing one | | | | 38.2 | Insecticide treated net are not readily available in the market | | | | 38.3 | Insecticide treated net generates a lot of heat | | | | 38.4 | Sharing a bed with two or more other persons prevent one from using a mosquito net | | - | | 38.5 | My sleeping 100m is full of many items, so nowhere to hang mosquito net | | | | 38.6 | Lack of skill in hanging the net prevent people from using the insecticide treated net | | | | 38.7 | Problems of getting in and out of the net prevent pregnant women | | | | | from using insecticide treated net AFRICAN DIGITAL HEALTH REPOSITORY PROJECT | | | | 39. | What are the other problems which you face regarding the use of insecticide freated | |-----|---| | | net? Please feel free to share them with me | | | 400 440 400 400 400 400 400 400 400 400 | | | , | | | | | | 46 * * * * * * * * * * * * * * * * * * * | #### Section K: Facilitating Factors relating to Use of Insecticide Freuted Nets Instruction: In this section, please complete the open spaces or tick (2) the alternative responses that apply to the respondent 40. The table below contains a list of possible factors which facilitate the use insecticide treated net among pregnant women. For each tick "Yes" or "No" as it applies to respondent. | S/No | Facilitating factors relating to use of ITN | Yes | No | |-------|--|-----|----| | 40.1 | Insecticide treated net are usually given to pregnant women free of charge in the clinics. | | | | 40.2 | Insecticide treated nets are given to pregnant woman at an affordable price | | | | 40.3 | I can hang the net on my own | | | | 40.4 | Insecticide treated net protects one from mosquito bite | | | | 40.5 | Insecticide treated nets makes one sleep well | | | | 40.6 | Insecticide treated net keeps one warm when it is cold | | | | 40.7 | Insecticide treated net prevents you from having malaria | | | | 40.8 | Husband always encourage you to use insecticide reated net | | | | 40.9 | l-lealthcare workers always advice you to use insecticide treated net | | | | 40.10 | Relatives advice you to use insecticide treated net | | | What are the other things
that usually encourage or motivate pregnant women to use insecticide treated net? | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |---| | ,0,,,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 1.000,000,000,000,000,000,000,000,000,00 | | ., | | | | Thank you for your contribution to this important study | | | | | | | | APPENDIX II | | | | LILO AWON EFON ELEGBOOGI LARIN AWON ALABOYUN TI O N WA FUN | | ITOJU NI ILE-ISE ETO ILERA AKOKO NI LIOBA IBILE AGBADARIGI NI | | 1PINLE EKO | | ludaseto nii owon | | lo je onitesiwaju akeko ti apa eto ilosiwaju ati eko nipa ilera ni abala ilera gbogbo ni ile eko | | iga fasiti ti Ibadan. Mo yan yin lati da si eto iwadi lori lilo awon eson elegbogi laatin awon | | laboyun to n gba itoju ni ile-ise eto ilera alakoko ni ijoba ibile Agbadarigi ni Ipinle Eko. | | dahun yin ni kikun, tinutinu ati otito yoo wu mi lori lopolopo yio si je ohun asiri. No ma | | ere awon incere wonyi pelu alaye kikun lati fun yin oye kikun lori awon ibeere naa. | | seun pupo sun isowosowopo yin | | | | ABALA A: AWON OHUN IDANIMO LAWUJO Igheyawo: Apon 2 Ninu igheyawo 3. Ni ikosile Dpo 5 Dbo | | lgbeyawo: 1. Apon 2 Ninu igbeyawo 3. Ni ikosile Dpo 5. be | | 2. Esin: 1. Esin Kristi 2. Musulumi 3. Abalaye | | 4. Ohun miran (se alaye) | | lye ojo ori ni ojo ibi to koja (Ni odun) | | 1 V: | | | | 4. Omiran (se alaye) | | S. Sekondin | | # Abelia abase lasi sas ati isa | | 6. Akcko gboyc onimo ijile 7. Akcko gboyc ion asa ali ise | | | 8 Akeko gboye masita9. Omiran (Se alaye) | |-----|--| | 6 | 1se asejeun: 1 Mi o nise 2 Oja pecpecpe 3. Osise ijoba | | | 4. Oniran (Jowo salaye) | | ARA | LA B: ITAN ILOYUN ATI IBISI | | | O to osu melo ti o ti wa ninu oyun bayii? (ipo iloyun ni osu kika) | | 7. | Omo niclo lo ni bayi? | | | | | | ALA C: IMO ATI OYE NIPA ARUN IBA ATI AWON EFON ELEGBOOGI | | 9 | Kin ni nka tabi awon ohun ti o ro pe o n sa arun iba? | | | 1. | | | :: | | | Jowo so amin arun iba meta fun mi | | 10. | L | | | | | | II | | 11 | So ewu meta (3) ti o ro mo ki alaboyun ni arun iba | | 11. | | | | ii. | | | i | | 12. | | | L÷ | | | | ii. | | | ii | | 13 | | | | 1. Otito ni 2. Iro ni kole saa 3. Mi oleso | | 14 | | | | | | | amin si gbogbo eyi ti o mo) 1. Awon omo odun manun si isale | | | 2. Awon omo danın anınmoleegun 3. Awon alaboyun 4. Awon omode Awon agba Awon alejo lati oke okun | | | | | | 7. Awon tio gbe leba odo 8. Awon miran (jowo salaye) | | | N je o ti gbo nipa awon eson elegboogi ri? 1. Beeni 2. Rara 2. Rara | | | 6. N je o ti g bo nipa awon elegboogi alalope ri? 1. Beeni 2. Rara | | 17 | Jowo so ansani meji (2) ti o wa ninu lilo awon cson elegboogi | AFRICAN DIGITAL HEALTH REPOSITORY PROJECT | 8. Arun iba ko le fa ki oyun baje 1. Otito ni | |--| | Arun iba ko le fa ki eje mato ninu ara 1. Otito ni 2. Iro ni kole faa 3. Mi o mo 2. Iro ni kole faa 3. Mi o mo Arun iba nikan ko le din ise ti eniyan maa n se ku 1. Otito ni 3. Mi o mo 3. Arun iba nikan ko le din ise ti eniyan maa n se ku 1. Otito ni 3. Mi o mo 3. Arun iba nikan ko le din ise ti eniyan maa n se ku 1. Otito ni 3. Mi o mo 3. Arun iba nikan ko le din ise ti eniyan maa n se ku 1. Otito ni 3. Mi o mo 3. Arun iba nikan ko le din ise ti eniyan maa n se ku 1. Otito ni 3. Mi o mo 4. ATE KII Ni: so awon oro kan lori oye wa nipa bii arun iba se buru to ati lilo awon efon | | 3. Mi o mo Ninu arun iba lore koore le fa ki alaboyun bi omo ti ko te iwon 1. Otito ni 2. Iro ni kole faa 3. Mi o mo 1. Arun iba le faa ki alaboyun bimo laipe ojo 1. Otito ni ni kole faa 3. Mi o mo 2. Arun giri ati iba ko nii bara won se rara 1. Otito ni 2. Iro ni kole faa 3. Mi o mo 3. Mi o mo 3. Arun iba nikan ko le din ise ti eniyan maa n se ku 1. Otito ni o ni kole faa Mi o mo ABALA D: Ninu aye lorii bi arun iba se buru to ati lilo awon efon elegboogt gege bi daabo ho ara eni. 4. ATE KII Ni: so awon oro kan lori oye wa nipa bii arun iba se buru to ati lilo awon efon | | Ninu arun iba lore koore le sa ki alaboyun bi omo ti ko te iwon 1. Otito ni 2. lro ni kole sa 3. Mi o mo 1. Arun iba le sa ki alaboyun bimo laipe ojo 1. Otito ni ni kole su 3. Mi o mo 2. Arun giri ati iba ko nii bara won se rara 1. Otito ni 2. lro ni kole sa 3. Mi o mo 3. Arun iba nikan ko le din ise ti eniyan maa n se ku 1. Otito ni o ni kolesa 3. Mi o mo ABALA D: Ninu aye sorii bi arun iba se buru to ati lilo awon esen elegbougt gege bi daabo bo ara eni. 24. ATE KII Ni: so awon oro kan sori oye wa nipa bii arun iba se buru to ati lilo awon eson | | ni kole faa | | Arun iba le saa ki alaboyun bimo laipe ojo 1. Otito ni ni kole saa | | 3. Mi o mo 2. Arun giri ati iba ko nii bara won se rara 1. Otito ni | | 2. Arun giri ati iba ko nii bara won se rara 1. Quito ni | | 3. Mi o mo 3. Arun iba nikan ko le din ise ti eniyan maan se ku 1. Otito ni oni kolefaa 3. Mi o mo ABALA D: Ninu aye lorii bi arun iba se buru to ati lilo awon efen elegboogt gege bi daabo ho ara eni. 24. ATE KII Ni: so awon oro kan lori oye wa nipa bii arun iba se buru to ati lilo awon efon | | 3. Arun iba nikan ko le din ise ti eniyan maa n se ku 1. Otito ni oni kolessa 3. Mi o mo ABALA D: Ninu aye sorii bi arun iba se buru to ati lilo awon eson elegboogt gege bi daabo bo ara eni. 24. ATE KII Ni: so awon oro kan lori oye wa nipa bii arun iba se buru to ati lilo awon eson | | Mi o mo ABALA D: Ninu aye lorii bi arun iba se buru to ali lilo awon eson eleghoogi gege bi daabo ho ara eni. 24. ATE KII Ni: so awon oro kan lori oye wa nipa bii arun iba se buru to ati lilo awon eson | | ABALA D: Ninu aye lorii bi arun iba se buru to ati lilo awon eson elegboogt gege bi daabo ho ara eni. 24. ATE KII Ni: 50 awon oro kan lori oye wa nipa bii arun iba se buru to ati lilo awon eson | | daabo ho ara eni. 24. ATE KII Ni: so awon oro kan lori oye wa nipa bii arun iba se buru to ati lilo awon eson | | daabo ho ara eni. 24. ATE KII Ni: so awon oro kan lori oye wa nipa bii arun iba se buru to ati lilo awon eson | | 24. ATE KII Ni: 50 awon oro kan lou oye wa nipa bii arun iba se buru to ati lilo awon eson | | | | eleubonui. Lori ubolobun konkan so fun mi baya o fam mo tabi o ko fammo. Bi o ka ba | | ciegooogi. Lon gootonan kookun, so tan ini baya o mia mo tant o ko tarasilo. Di o ka oa | | si mo nkan nipa re, jowo so. | | | | ONKA CHOLOHUN ORO MO FARA MI O MI O FARA | | MO LESO MO | | 24.1 Awon eson ti ko ni egboogi dabobo ni ju | | eyi ti o ni egoogi | | 24.2 Awon cson clegboogi ko le di eson lowo | | lati bu ni je | | | | 24.3 Miniu agbo lore koore daabo bo eniyan ju | | 24.3 Miniu agbo lore koore daabo bo eniyan ju tilo awon eson elegboogi | Sisun labe avvon cfon ja si ofo nitoti pe eni AFRICAN DIGITAL HEALTH REPOSITORY PROJECT wulo lati dena eson ba tobi Eniyan ko le e lo awon cson bi ibusun re Awon cson le secemi eniti o ba sun labe re 24.5 24.6 24.7 | | ti o ba n sun labe re si le ni arun iba | | |-------|---|--| | 24.7 | Lilo avon cson clegboogi ni igba iloyun le
se akoba sun alaboyun | | | 24.8 | Sisun labe awon eson n sua ki eniyan langun nitori pe o maa n mu oom | | | 24.9 | Alaboyun nikan to ye ki o mua sun labe awon eson | | | 24.10 | Awon eson elegboogi le dena eson lati bu nije sugbon ko lee daabo bo ni lowo anun iba | | | 25. | Awon cson elegboogi ko le dena aaru | n iba I. Mo faia mo 2. Mi o le so | | |-----|-------------------------------------|-----------------------------------|--| | | 3. Mi o fara . Ki si idahun | | | #### 26. ABALA E: : Fifa nra wa sile fun arun iba ATE KE.II: Ipele keji da le lori lili ara eni sile sun arun iba, bi arun iba se buru to ati lilo awan eson elegboogi. Fun alaye oro kookan, so sun mi boya o sara mo tabi o ko sara mo. Bi o ko ba si ni idaniloju lori re, jowo so. | ONKA | GROLOHUN ORO | MO FARA | MI O LE | MI O FARA
MO | |------|---|---------|---------|-----------------| | 26.1 | lba kii se arun ti o lewu fun alabayun | | | | | 26.2 | Arun iba ko lagbara lori alaboyun ju eniti ko loyun lo | | | | | 26.3 | Aisan yepere ni iba je | | | | | 26.4 | Ma gbagho pe mi o le ni arun iba | | | | | 26.5 | Aisan iba kii se isoro kan ti alaboyun le daamu le lori | | | | | 26.6 | Aisan iba wopo ni agbegbe li mo n gbe. nitori na eru n ba mi ki n ma baa ni | | | | | 26.7 | Mo le ni arun iba sugbon ko le kan omo inu mi | | | | | 26.8 | Aye po sun alaboyun lati ni arun iba | | | | | | awon ibeere torii awon eson e | 0 00 0 | | | |---|---|------------------------|---|-----------------| | ilkeko (| sege or or the oral | | | | | Nje | ti ni anui iba ri? 1. Beeni | 2. Rara | | | | B ₁ o | ba le ranti, o to igba melo ti o ni a | isan iba ni odut | to koja? | | | |
igba melo ti o ti se aisan iba ninu | oyun ti o wayii | ? | | | | ni o maa n lo lati dabobo ara re lov | vo ibva? (so cy | okan) | | | | | | | | | DALA | C. ITO III ATLIDADODO | | | | | | G: ITOJU ATI IDABOBO | nan to leti Jeen | and the 2 L Ray | | | | o ti gbo nipa ohun ti alaboyun le r | | arınıba: 1. Dec | | | | ara (Ti o ba je ram, lo si ipo | | a aha ne alaba | vun la man la | | | dahun re si ibeere oke yii ba je | | o goo be alabo | yun le mas to | | den | ama arun iba? | | | | | a Til | dahun re si iheere nahan vii h | n ie becni o | IN John haws n | II OSE OBO OBIN | | alab | dahun re si ibeere ogbon yii boyun le maa lo lati dena anun iba? BALA II: NINI AWON EFON | | | | | alab | oyun le maa lo lati dena anun iba? | ATI LILO RE
MO FARA | | MI O FAR | | alab
4 a A | BALA II; NINI AWON EFON A | ATI LILO RE | • | | | alab | oyun le maa lo lati dena anın iba? BALA II; NINI AWON EFON | ATI LILO RE
MO FARA | • | MI O FAR | | alab | BALA II: NINI AWON EFON A GROLOIIUN ORO N je o ti ni awon efon | ATI LILO RE
MO FARA | • | MI O FAR | | alab
4 a A
DNKA
Hall | BALA II: NINI AWON EFON A GROLOIIUN ORO N je o ti ni awon efon elegboogi? Se o ni awon cfon lowo lowo? N je o ti lo awon cfon elegboogi | ATI LILO RE
MO FARA | • | MI O FAR | | alab
4 a A
DNKA
Hall
Hall | BALA II: NINI AWON EFON A GROLOIIUN ORO N je o ti ni awon efon elegboogi? Se o ni awon cfon lowo lowo? | ATI LILO RE
MO FARA | • | MI O FAR | | alab
4 a A
DNKA | BALA II: NINI AWON EFON A GROLOIIUN ORO N je o ti ni awon efon elegboogi? Se o ni awon efon lowo lowo? N je o ti lo awon efon elegboogi ninu oyun ti? | ATI LILO RE
MO FARA | • | MI O FAR | | alab
4 a A
DNKA
Ma.1
Ma.2
Ma.3 | BALA II: NINI AWON EFON A GBOLOIIUN ORO N je o ti ni awon efon elegboogi? Se o ni awon efon lowo lowo? N je o ti lo awon efon elegboogi ninu oyun ti? Se o lo awon efon elegboogi ni ninu oyun ti o ni koja? Se o lo awon efon elegboobi ni | ATI LILO RE MO FARA MO | • | MI O FAR | | alab
4 a A
DNKA
Hall
Hall | BALA II: NINI AWON EFON A GBOLOIIUN ORO N je o ti ni awon efon elegboogi? Se o ni awon efon elegboogi ninu oyun ti? Se o lo awon efon elegboogi ni ninu oyun ti o ni koja? | ATILICO RE MO FARA MO | • | MI O FAR | | clegt | poogl. Fun goolondii olo kookan, so jun nii bi o ba lamino taini o ko lalamo. Di o k | |-------|--| | NIO 3 | hun kan nipa re jowo so. | | 35. | Nigba wo ni o maa n sun labe awon eson elegboogi? | | 1 | Nigba ojo nikan | | | Nigba oye nikan | | | Awon igba oru ninu odun | | 0 | Gbogbo igba ojo. oye ati oru | | O | Nigba ti oju ojo ko bag bona | | D | Mikillo | | 36. | Bawo ni o se nlo awon eson elegboogi si? 1. Ojoojumo 2. Eko kan 3. Mi kii saba lo 4. Mi o lo ri | | 37. | Ni asiko oju wo ni o maa n lo awon eson elegboobi? 1. Ti o ba n sun loju osan 2. Ti o ba sun loju lale i gbogbo igba ti mo ba se sun | | | | | AB | ALA J: Awon okun amoriya ati idena ti o je mo lilo awon efon elegboogi laarin awon | | ala | hoy un | | | | ABALA I: Oye lori hi nrun iba se buruto, tifi ara eni sile sun iba ati lilo nwon eson 38. ALAYE: ATE KERIN DA LE LORI AWON ORO TO JE MO IDENA. FI OWO SI BEENI TABI BEEKO GEGE BI O SE YE O SI | ONKA | GBOLOHUN ORO | MO FARA
MO | MI O LE
SO | MI O FARA
MO | |------|--|-------------------------|---------------|-----------------| | 38.1 | lye owo ti won li nta awon efon ko
le je ki eniyan lo | | | | | 38.2 | Awon eson elegboogi ko wopo loja | | | | | 38.3 | Awon efon elegboogi inna n moru | | | | | 38.4 | Sisun lori ibusun pelu awon elomiran kii je ki eniyan lo awon eson | | | | | 38.5 | Yam ibusun mi ti kun ju, ko si ibi ti
mo le fi awon eson ko | | | | | 38.6 | Aini oye bi a se le si ko kii je ki awon eniyan lo awon eson elegboogi | . HEALTH REPOSITORY PRO | IFCT | | | 39. | Awon isoro miran wo ni | alaboyun | maa n | doju l | ko nipa | lilo | awon | clon | elegboogi | ?? | |-----|------------------------|----------|-----------|--------|---------|------|--------|------|-----------|----| | | *********** | | 100000000 | | | | d0 0 - | | | | 40. ABALA K: Ate karun da le losi awon ohun amosi ya ti o wa ninu lilo awon eson elegboogi. si owo si beeni tahi beeko gege bi o ti ye o si. | ONKA | AWON OHUN AMORI YA TI O WA NINU LILO BEE | BEEKO | |-------|--|-------| | 40.1 | Won maa n sun awon alaboyun ni awon cson elegboogi lose ni awon ile-ise eto ilem | | | 40.2 | Won ma anta awon cfon fun awon alaboyun ni owo tasere | | | 40.3 | Mo le si awon eson ko sun ra mi | | | 40.4 | Awon cson elegboogi maa n dabo bo eniyan lowo cson | | | 40.5 | Awon eson elegboogi man nje ki eniyan sun gbodun | | | 40.6 | Awon cson clegboogi maa dabo bo eniyan ni igba otutu | | | 40.7 | Awon cson clegboogi mna dabo bo eniyan sun arun iba | | | 40.8 | Oko mi man fe kin lo awon eson elegboogi | | | 40.9 | Awon onise ilem man ngba mi niyanju lati lo awon efon | | | 40.10 | Awon are ile mae ngbe mi niyanju lati lo awon cfon | | | 41. | Awon ohun awuni lori tabi amoriya wo lo wa ninu ki awon alaboyun maa lo awon efon | |-----|---| | | clegboogi? | | | *************************************** | | | ******************************* | # MINISTRY OF HEALTH DEPARTMENT OF PLANNING, RESEARCH & STATISTICS DIVISION PREVATE MAIL BAG NO. 5027, OVO STATE OF NIGERIA Lour Res All All communications should be adjusted to He Henryplike Commissionaler ground Ou Ret. Na. All 13 479/135 20 July: 2016 The Principal Investigator, Department of Health Promotion and Education, Faculty of Public Health, University of Ibadan, Thadan: Attention: Balogun Theophilus ETHICAL APPROVAL FOR THE IMPLEMENTATION OF YOUR RESEARCH PROPOSAL IN OYO STATE This is to acknowledge that your Research Proposal titled "Utilisation of Insecucides Treated net among Pregnant Women Attending Primary Health Care Centres in Badagry Local Government, Lagos State, Nigeria" has been reviewed by the Oyo State Ethical Review Commillees - The committee has noted your compliance in the light of this I am pleased to convey to you the full approval by the conunittee for the implementation of the Research Proposal in Oyo State, Nigena - Please note that the National Code for Health Research Ethics requires you to comply will all institutional guidelines, rules and regulations, in line with this the Committee will inonitor closely and follow up the implementation of the research study However, the Ministry of Health would like to have a copy of the results and conclusions of findings us this will help in policy making in the heath sector escarch & Statistics Sceretary, Oyo Stole, Research Ethical Review Committee ### MINISTRY OF HEALTH DEPARTMENT OF PLANNING, RESEARCH & STATISTICS DIVISION PRIVATE MAIL BAG NO. 5027, OVO STATE OF NIGERIA FOR RES NE All communications should be addressed to the Monoralitie Committee her year the Om Ref No. A1313 479/135 go July. 2016 The Penemal Investigator, Department of Health Promotion and Education. Faculty of Public Health. University of Ibadan, Ibadan Attention: Ralogun Theophilus #### ETHICAL APPROVAL FOR THE IMPLEMENTATION OF YOUR RESEARCH PROPOSAL IN OYO STATE This is to acknowledge that your Research Proposal titled "Unlisation of Insectiodes Treated net among Pregnant Women Attending Pruriary Health Care Centres in Badagry Local Government, Lagos State, Nigeria" has been reviewed by the Oyo State Ethical Review Committees - The committee has noted your compliance. In the light of this I am pleased us convey to you the full approval by the committee for the intplementation of the Receipt Proposal in Oyo State, Nigeria - Please note that the National Code for Health Research Ethics requires you to comply with all institutional guidelines, rules and regulations, in line with the Committee will monitor closely and follow up the implementation of the research study However, the Ministry of Health would like to have a copy of the results and crochemist of lindings of this will help in policy making in the health sector