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Abstract

Background: — Although, it has becen documented
that infants with car malformations arc among the
highest-risk cohorts for renal malformations of any
studicd population with congenital birth defects,
however report from meta-analyses have showed an
insignificant rclationship between minor car
malformations and kidney anomalics. In order to
cxplain the intractable link between kidney and car
syndromes, we discussed the molccular regulation
of development of both organs. In addition, the rolc
of shared developmental control gene
polymorphisms and dysfunction of shared transport
or structural protecins in the car-kidnecy syndrome
were reviewed.

Methodology and review criteria: — A narrative
review of car and kidney syndrome. Pubmed Medline
and Online Library scarch was conducted for
literature/studics in English from their conception
until Scptember 2016 (without any date restrictions)
using the relevant scarch words.

Results: — An overvicw on the development of car
and kidney and their molecular regulation, indicated
that car and kidney develop from primordial cells
that arisc at different time and grow at dissimilar
ratc, and the deveclopment of both organs is
synergistically regulated by PAX-SIX-EYA
regulatory cascade.

Conclusion:The molecular regulation of
development of the car and the kidney and the
presence of some shared developmental control gence
polymorphisms and structural/transport proteins arc
documented in this review. A careful clinical analysis
of these pathologics will facilitate better
understanding and diagnosis of car-kidney
syndromes in affected patients. Furthermore, there
is nced for continued research especially among the
Nigerian population as part of the global data.
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Résumé

Contexte: - Bien qu’il ait ét¢ documenté que les
nourrissons présentant des malformations
auriculaires sont parmi les cohortes les plus a risque
pour les malformations rénalcs de toute population
¢tudiée présentant des anomalies congénitales,
cependant les méta-analyses ont montré unc relation
insignifiante entre les malformations mincures de
Iorcille et les anomalies durein. Afin d’expliquer le
lien insoluble entre les syndromes du rein et de
I’oreille, nous avons discuté de la régulation
moléculaire du développement des deux organes. En
outre, on a passé¢ en revuc un certain nombre de
polymorphismes du géne de contréle du
dévcloppement ct du dysfonctionnement du transport
partagé ou des protéines structurales dans le
syndrome de I’oreille et du rein.

Meéthodologie et critéres d’examen: - Examen
narratif du syndrome de I’oreille et du rein. PubMed,
Mecdline et la recherche en ligne de bibliothéque a
¢té menée pour la littérature / les études en anglais
de leur conception jusqu’a septembre 2016 (sans
aucune restriction de date) en utilisant les mots
recherchés pertinents.

Résultats: - Fournir une vue d’ensemble sur le
dévcloppement des oreilles et des reins et leur
régulation moléculaire, indiquant que ’oreille et le
rcin sc développent a partir de cellules primordiales
qui apparaissent a différents moments et croissent a
des taux différents, et le développement des deux
organcs cst de maniére synergique régulé par PAX-
SIX-EYA cascade réglementaire.

Conclusion: - La régulation moléculaire du
développement de I’oreille et du rein ct la présence
de certains polymorphismes du géne du
développement partagés et des protéines structurelles
/ de transport sont documentées dans cette revuce.
Une analyse clinique minuticuse de ces pathologics
facilitera unc meilleure compréhension et un meilleur
diagnostic des syndromes auriculo-rénal chez les
patients attcints. En outre, il cst nécessaire de
poursuivre les recherches, en particulier auprés 'dc
la population nigériane, dans le cadre des donnces
mondiales.

Mots-clés: Syndromes auriculo-rénal, Troubles
auditifs, Dysplasie rénale, Troubles génétiques,
Néphrotoxicité et Ototoxicilté.
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Introduction

Edith Louisc Potter first described an association
between kidney and car abnormalitics in 1946 when
she reported occurrence of wrinkled and flattened
cars in 20 infants dying in perinatal period with
bilateral renal agenesis [1]. Isolated minor car
malformations, with intact inncr car structurc and
function, occur with a frequency of 5-10/1000 live
births [2,4] while the incidence of structural renal
anomalics among pacdiatric population is reported
to be 1-3/100 live births [5]. Reports from various
studics have documented cvidence of significant
association between renal and car abnormalitics
[6,8]. In studics of children with isolated pre-
auricular tags who had renal ultrasonography done,
3-8% of the cohorts were documented to have
various urinary tract abnormalitics, including renal
agenesis, hypoplasia, horsc-shoe kidney and
hydroncphrosis [6,7]. Data from a previous study
which analysed 32,589 consecutive fetuses over 10
years reported renal anomalies in 1.2% of the fetuscs
[8]. The study further suggested a strong association
between external car deformitics and renal
malformations, cven after excluding patients with
syndromic diagnoses.

Of greater interest is the valuc of chronic
kidney discase (CKD) staging in predicting cochlear
dysfunction among patients with progressive chronic
renal failure. Govender et al. [9] investigated
cochlear function in a spectrum of CKD patients
using purc tonc audiometric testing and Distortion
Product Oto-acoustic Emissions (DPOAEs). Paticents
in CKD stages 1 and 2 presented with normal
cochlear functioning defined by normal pure-tone
thresholds and DPOAEs, while carly cochlear
dysfunction was identified by DPOAE testing in
patients with advanced CKD, particularly paticnt
with CKD stage 5.This was also shown in an carlicr
study in Nigcria by Lasisi et al. [10] who investigated
pre- and post-hacmodialysis hearing function in
paticnts initiating maintcnance hacmodialysis. They
found that hecaring threshold was significantly
reduced in patients with end stage renal discasc
(ESRD) following threc sessions of hacmodialysis.
In combination with the profound fluid and
clectrolytes derangements scen in CKD patients,
comorbidities such as high blood pressure [11] and
ototoxic drugs including frusemide [9,12) play a role
in the development of auditory dysfunction, which
is very common in advanced CKD [13,14].

Even though previous studies have postulated
that infants with auricular pits or cup cars arc among
the highest-risk cohorts for renal malformations of

any studicd population with congenital birth defects,
rcport from mcta-analyscs however showed a weak
corrclation between minor car malformations and
kidncy anomalics [15].This is not surprising because
kidneys and cars arc formed from scparate primordial
cell lincages at different times, and grow at different
rates. Mctancphric mesenchyme and urcteric bud arc
derived from intermediatc mesenchyme while
external car structures arc derived from first
branchial pouch, a dcrivative of surface cctoderm.
Therefore, the intractable link between car and
kidncy abnormalitics could not be explained just by
an isolated embryonic insult that may simultancously
affect both developing organs during morphogencsis.
However, it is increcasingly being rccognized that
various syndromes cvidently link structural renal
abnormalitics to hecaring impairment [16,17].
Morcover, molecular as well as the genctic basis for
many of these syndromes have so far been clucidated,
thus, providing an insight into the overlap between
the renal and inner car physiology. The objective of
this review is to further explore the link between
kidney and car by systematically grouping human
car-kidney syndromes into two distinct pathologic
mechanisms including; disorders of shared
developmental control genc polymorphisms, and
disorders involving dysfunction of shared transport
or structural protcins. This review will also provide
an overview of car and kidney syndromes, while
highlighting their molecular mechanisms and gene
expression.

Materials and methods

This is a narrative review of car and kidney
syndrome. Pubmed Medline and Online Library
scarch was conducted for literature/studics in English
from their conception until September 2016 (without
any datc restrictions) using the following search
words: car-kidney syndromes, Oto-renal syndromes,
hearing impairment, renal dysplasia, inheritable
hearing disorders, nephrotoxicity, ototoxicity,
Branchio-Oto-Rcnal syndrome, Townes-Brocks
syndrome, Kallmann syndrome,
Hypoparathyroidism, Deafness and Renal Dysplasia,
HDR syndrome, Bartter syndrome, Distal Renal
Tubular Acidosis with Dcafness, dRTA, Alport
syndrome.

Ear and kidney development: focus on molecular
regulation

Embryology of ear

During human development, car develops into three
different structural parts; the inner car, the middle
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car and the outer car. The inner car is formed by the
third weck of embryonic life.Otic placode develops
on cach side of the posterior aspect of the brain and
subscquently grows to form otic vesicles. The
saccule, cochlear duct and ductus rcunicns arc
derived from the ventral part of cach vesicle while
the utricle, cndolymphatic duct and scmicircular
canals arc dcrivatives of the dorsal component.
Approximately during the 6th week of cmbryonic
life, saccule, a group of sensory cclls that form
cpithclium of the inncer car, give risc to a tubular
outgrowth representing primitive cochlear duct at its
lower border and subscquently connect to cochlear
duct through the ductus rcuniens. The cochlear duct
penetrate the surrounding mesenchyme up till the
8th weck of embryonic life, following which, the
cochlear duct’s mesenchyme diffcrentiate into a
cartilage within which vacuolization later occur,
lcading to the formation of three cavities namely;
the scala vestibule, the scala tympani and the scala
media. Perilymphatic spaces (comprising both the
scala vestibule and scala tympani) contain perilymph
while the scala media contains cndolymph. The
cochlcar duct, scparated from scala vestibule by
vestibular membrane (Reissners membrane) and
from scala tympani by basilar membranc, is attached
to the cartilage laterally by the spiral ligament.
During the 6th week,statoacoustic ganglion is formed
from otic vesicle, and then divides into cochlear and
vestibular branch of cranial nerve VII to supply
sensory cells in organ of Corti, saccule, utricle and
semicircular canals [18].Following the development
of otic vesicle, the transcriptional regulator EYAI,
expressed in the otic cctoderm triggers a molecular
signaling pathway involving SIX1, a transcription
factor that rcgulates the growth and functions of all
sensory cells in the inner car [19]. Morcover, PAX2
is cxpressed by the cells of otic vesicle,
endolymphatic duct and cochlcar hair cclls while
GATA3 is expressed mainly in the otic vesicle [20].
Available cevidence showed that EYAl-deficient or
SIX1-deficient mice undergo apoptosis of otic
cpithelium with the growth of the inner car arrested
at the stage of otic vesicle [21,22]. Furthermore, mice
with  homozygous PAX] mutation lack
endolymphatic duct and cochlear outgrowth [23]
while heterozygous GATA3-deficient mice showed
progressive loss of cochlear hair cells [20].

The middle car is derived from the endoderm
of first pharyngecal pouch, which gives risc to
primitive tympanic cavity [18]. The distal portion
of this primitive cavity form tubotympanic recess
whilc the auditory tube develops from the proximal
portion of the cavity [ 18]. The malleus and incus are

derived from the first pharyngeal arch while the
stapes is derived from the sccond arch. Even though,
auditory ossicles are formed during the first half of
the fetal life, they recmain embedded in the
surrounding cctoderm-derived mesenchymal tissue
until 8th month when the tissucs surrounding the
ossicles undergo apoptosis, Icading to the formation
of tympanic cavity wall and cventual appearance of
mastoid proccss [24,25].

Extcrnal auditory mecatus is formed from
pharyngcal cleft during the 5th week of embryonic
life and grows to its full length by the 18"weck
[18,24,26]. Under no circumstances, did the
pharyngeal cleft extend to its corresponding pouch,
and as a result of this, the cardrum is a tridermal
structure, originating from three different layers
comprising; cctoderm, endoderm and connective
tissue. The auricles are formed between 6th and 8th
months, originating from the auricular hillocks, the
6 mesenchymal condensations of the first and second
pharyngcal arches [18,24,26].

Embryology of the kidney

The permanent kidney originates from the
mctanephros, one of the three main structures
initially derived from intermediate mesoderm [27).
The other two temporary kidney-like structures, the
proncphros and the mesonephros, atrophy and
disappear cxcept in males where the mesonephric
portion gives rise to male reproductive organs [27)].
The cells of the intermediate mesoderm produce
ODDI, a factor that functions to facilitatc the
formation of progenitor cells of mectanephric
blastema which expresses EYAl and PAX2 in the
developing kidney[28]. These regulating factors
activate a cascade of transcription factors involving
SIX1 and SALLI, lcading to cxpression of Glial cell
linc-derived neutrophic factor (GDNF) gene, which
induces budding of RET-containing nephric duct.
The appearance of urcteric duct, an cpithelial
outgrowth of ncphric duct, is positively regulated
by PAX2/8, which rcgulates cxpression of
GATA3(another transcriptional factor) and activation
of RET gene which encode for a tyrosine kinase
receptor that is localize to the cell surface[29,30].
Accordingly, homozygous mutations involving
PAX2, GATA3 or RET gene have been shown to be
associated with kidney defects in mice lacking
tyrosine kinase receptor [31-33]. Similarly, humans
with inactivating PAX2 mutation cxhibit signs of
renal-coloboma syndrome and renal hypoplasia [34].
The process of nephrogencsis is initiated when the
urcteric bud penetrates the metancphric tissuc
thereby leading to induction of mctancphric
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mesenchyme and subscquent aggregation of
mesenchymal cells around the tip of the ureteric bud,
thus, triggering mcsenchyme-cpithelial
transformation and formation of renal vesicles. As a
result of the invasion of metancphric mesenchyme
by the ureteric bud, there is repetitive branching of
the bud leading to the formation of about 15 branch
generations, with induction of new nephron by the
interactions between corresponding newly formed
ureteric branch tip and the adjacent metancphric
tissue cap. Hence, the final nephron mass is a
function of total number of resultant ureteric bud
branches that arise during branching morphogenesis.
Successive appearance of two clefts in the renal
vesicles leads to the formation of S-shaped tubule,
with the proximal cleft invaded by angioblasts and
ultimately giving rise to glomeruli. The maturc
nephron is united to the collecting duct which in turn
converges with other ducts in the medulla to form
renal papilla. Approximately, by the 22nd and 34th
week of gestation, the definitive cortex and medulla
of the embryonic kidney are fully formed. In
summary, ear and kidney develop from primordial
cells that arise at different time and grow at dissimilar
rate, and the development of both organs is
synergistically regulated by PAX-SIX-EYA
regulatory cascade.

Disorders of shared developmental control gene
polymorphisms

Branchio-Oto-Renal Syndrome

Branchio-oto-renal Syndrome (BOR) syndrome, first
described in 1975, is characterized by mixed
conductive or sensorincural deafness, car
malformations, branchial cleft and renal
abnormalitics including renal hypoplasia, pelvic-
ureteric junction obstruction and vesico-ureteral
reflux [35].The prevalence was estimated at
1:40,000, with 2% of children with severe deafness
affected [36,37].It is a heterogencous genctic
disorder caused by a varicty of mutations affecting
genes in the EYA/SIX pathway, with clinical
expression extremely variable from one family to
another, as minor anomalics have been documented
in about 20% of BOR familics [38]. Ear
abnormalitics include pre-auricular pits and
appendages, atresia or stenosis of the external
auditory meatus and auricular deformitics, cervical
fistulas and cysts as well as ossicular malformation
relating to the developmental abnormalitics arising
from the first and the sccond brachial arches.
Furthermore, the cochlea is underdeveloped;
exhibiting fewer turns than normal, and occasionally

there may be dilatation of the vestibular duct [17).
Rcnal hypoplasia is not pathognomonic, and when
present only 5-10% of paticnts with BOR syndrome
develop advanced chronic renal failure [16].The
renal anomalics arc characterized by decrcased
kidney size and volume with associated increased
cchogenicity and poor corticomedullary
diffcrentiation, and histological cvidence of
glomerular hyalinization, mesangial proliferation and
splitting of glomerular basement membranc.
Morcover, available evidence suggests that there are
three differentiated phenotypes of BOR syndromes.
In the first phenotype, the syndrome is associated
with renal anomalies; while the second phenotype
lacks renal abnormalitics; the third phenotype
however present with brachial and renal anomalies
with no associated dcafness.

In 1992, mutation involving EYAI gene, the
first BOR syndrome genc was identified and
localized to the long arm of chromosome 8 [39,40]
and subsequently scveral other mutations had since
been reported in humans[41,42]. More than 80
different mutations involving EYA1 gene have been
documented, with heterozygous mutation of EYAI
demonstrated in 30% of BOR syndrome patients.
EYAl gene, a homologous Drosophila
developmental gene is expressed very early in human
embryo around 4-6 weeks. More specifically, it is
expressed in mesenchymal cells of the Ist branchial
arch, from which the outer and inner car structures
arc derived, thus explaining the outer car deformities
and conductive decafness that is observed in BOR
syndrome patients. Similarly, EYA1 is also expressed
in the otic placode and hair cells of the cochlea, thus
implicating EYA1 in the differentiation and/or
survival of the inner car cell populations, thereby
clucidating the sensorincural decafness in BOR
syndromes [43]. Expression of EYAI in the
condensing mesenchyme of the kidney induces
GDNF which is required for ureteric budding and
branching, thus consistent with urcteric anomalies
and rcnal hypoplasia in BOR syndrome.
Furthcrmore, co-cxpression of EYAl and PAX2
during car and kidncy development highlights the
synergistic regulatory role of these two genes in
controlling the pathway leading to mesenchymal-
induced renal tubule formation. Also, EYAT triggers
a signaling cascade activating the member of SIX
transcription family during car and kidncy
development. This is in consistent with reports that
dcmonstrated association between BOR syndrome
and heterozygous mutations involving both SIX1 and
SIXS transcription factors [44,45].
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Townes-Brocks Syndrome

Townes-Brocks syndrome (TBS) also known as renal
car anal radial syndromecis a rarc autosomal dominant
syndrome was first described in 1972 by Townes and
Brocks [46,47]. It is a multisystem disorder with
variable clinical manifestation, characterized by
renal hypoplasia or dysplasia, scnsorincural or
conductive deafness associated with dysplastic
ossicles and oval windows, cxternal car
malformations (pre-auricular tags or pits, superior
helix deformity), anorectal malformations including
stenosis, anteriorly placed anus and imperforate anus,
and hand dcformitics such as bifid thumb, prcaxial
polydactyly or triphalangecal thumb [17]. Diagnosis
of TBS is suggested when two or more of these
malformations arc present in an individual
[48]. Townes-Brocks syndrome is causced by a
mutation of the SALL1 genc, cncoding a
developmental regulatory factor that scems to play
a crucial role in the embryonic development of the
car, limb, liver, brain, kidney as well as excretory
system [17,49]. Townes-Brocks syndromc from
dominant ncgative missensc mutations of SALLI has
a morc scvere phenotype than that causc by SALLI
haploinsufficiency [50]. Renal dysplasia is thought
to occur in TBS becausc of inactivating mutation
involving the SALL1 gene which is expressed by
mectancphric mesenchymal tissucs capping
outgrowths of ureteric bud, thereby resulting in
inadequate branching of the urcteric bud that
ultimately induce formation of renal tubules [51].
Accordingly, study of murinc model of SALLI
deficiency showed that mice lacking SALLI failed
to develop ureteric bud outgrowths and dic of renal
agenesis in perinatal period. Patients with
heterozygous SALL1 gene mutations have been
reported to develop renal agenesis that resulted in
end stage renal discase, and ultimately requiring
renal replacement therapy later in life [52]. Although,
the role of SALLI1 in developing car is yet to be fully
clucidated, report from available study suggested that
patients with TBS exhibit mixed sensorincural and
conductive dcafness [17], thus suggesting that
SALL1 may play a rolc in determining the fate of
the first and sccond branchial arches as well as the
differentiation of the otic vesicle.

Kallmann Syndrome

Kallmann syndromec is a congenital disorder
characterized by hypogonadism sccondary to
deficiency of gonadotrophin-releasing hormone and
anosmia caused by underdevelopment of olfactory
bulb and/or tract. Three forms of Kallmann syndrome
have been recognized based on mode of inheritance:

an X-linked form resulting from mutation of Kall
gene, encoding anosmin-1[53]; an autosomal
dominant form arising from mutation of Kal2 gene,
encoding FGFRI1 protcin [54]; and autosomal
recessive forms, which is associated with mutations
of the genes encoding prokincticin2 and its receptor
[54]. Anosmin-1, the protein encoded by Kall gene,
is produced in the developing car and kidney by the
basal lamina cells of the outer hair ccells of the
cochlcar and urcteric bud. Approximatcly a third of
patients with X-linked Kallmann syndrome prescnt
with unilateral renal aplasia with associated bilateral
sensorincural hearing loss but occasionally, they may
also present with conductive decafness [55]. In
addition, the abscnce of vas deferens (a derivative
of mesoncphric duct, which give risc to urcteric bud
and cxpresscs anosmin-1) on the same side to the
missing kidney in a minority of patients, further
suggests a role for anosmin-1 in the induction of
mesenchymal blastemal by the ureteric branches.
However, the variable penetrance of renal agenesis
together with a functioning kidney in individuals
with Kallmann syndrome [56,57] therefore raised a
question regarding dircct stimulating role of
anosmin-1during branching morphogenesis and
induction of nephrogenesis, while suggesting a
possible compensating role for other proteins in
individual with anosmin-1 dcficiency. Available
cvidence suggest that anosmin-1 and FGFRI1 (Kal2
gene product) co-localize and interact in the olfactory
bulb during embryonic life, with anosmin-1
positively regulating FGFR1 signaling pathway.
Taken together these findings, it was hypothesized
that the higher prevalence of Kallmann syndrome in
malcs may be explained by the gender difference in
the cxpression of  anosmin-1 [58].

Hypoparathyroidism, Deafness and Renal
Dysplasia

Hypoparathyroidism, dcafness and renal dysplasia
(HDR) syndrome is transmitted as an autosomal
dominant disorder involving mutation of GATA3
gene localized to the short arm of chromosome 10
[59]. It is characterized by undetectable parathyroid
hormones levels associated with hypocalcemia,
variable kidney malformations ranging from isolated
vesicourcteral reflux with normal-sized kidney to
renal agencsis, and moderate to scvere sensorincural
deafness [59]. GATA3, a developmental transcription
factor is produced carly in the parathyroid glands,
cochlear hair cells and nephritic duct of the
developing embryo. GATA3 scems to be cssential
for proper migration of nephric duct, with cvidence
from study of murine model showing failure of
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induction of metancphric blastema as a rcsult of
abnormal migration of ncphric duct [60]. Similarly,
micc with heterozygote GATA3 mutation showed
cvidence of progressive pereeptive hearing loss with
associated outer hair cclls apoptosis compared to
mice with normal GATA3 gene, thus suggesting that
GATA3 influence cochlear hair cell survival in the
developing middle car [60].

Disorders of shared transport and structural
proteins

Bartter syndrome

Bartter syndrome is an inherited disorder of impaired
salt transportation in thick ascending limb of Henle
(TALH) characterized by hypokalemia, salt wasting,
normal blood pressurc and failure to thrive [61]. It
is inherited as autosomal recessive and two types
have been recognized namely; classic type and
antenatal type otherwise known as Bartter syndrome
with deafness (BSND) [62,63]. The classic type
results from loss of function mutations affecting onc
of the three gences encoding sodium chloride transport
proteins in the TALH. The commonest disorder is
causc by mutation of the gene NKCC2, encoding
sodium-potassium-chloride cotransporter on the
apical membrane [64]. The seccond mutation affects
KCNIJI, encoding apical outwardly rcctifying
medullary potassium channel (ROMK) which
recycle K* back to the tubular lumen in parallel to
the function of sodium-potassium-chloride
cotransporter [65]. A third mutation has been
described in the CLCNKDb gene, which encodes CIC-
Kb, a voltage-gated chloride channel localized to
basolateral membrane of TALH [66]. These three
mutations arc mild, associated only with classic
Bartter syndrome, and arc rarcly associated with
deafness [16). Bartter syndrome with decafiess has
been reported in consanguincous familics and is
cause by mutation in BSND gene. This gene is
localized to 1p31 and encodes Barttin which co-
localizes with CIC-Kb channcls and potassium
sccreting cells in the inner car. Morcover, Barttin is
co-cxpressed with both CIC-Ka and CIC-Kb
throughout the renal tubules and the inner car cells
including; stria vascularis cclls and vestibular
apparatus [67-69]. Barttin scems to play a crucial
role for the expression and regulation of function of
the voltage-gated chloride channcls because CIC-Kb
is deficient when it is co-expressed with altered
Barttin protcins [67]. Therefore, homozygous
mutations of the BSND or heterozygous mutations
in two chloride channels typically result in salt
wasting and congenital scnsorincural dcafness
(70,71].

Distal renal tubular acidosis with deafness
Classic distal rcnal tubular acidosis (dRTA), also
known as typc 1 RTA, is a disorder of distal rcnal
tubular dysfunction charactcrized by the inability of
a-intercalated cclls to scerete hydrogen ion into the
urine, thereby lcading to defective urine
acidification. Infants with dRTA typically present
with inappropriatcly high urine pH, metabolic
acidosis, ostcomalacia, ncphrocalcinosis and failure
to thrive. Distal RTA is a genctically heterogencous
disorder with two patterns of inheritance identificd;
autosomal dominant form, which is caused by
heterozygous mutation for the anion exchanger gene
SLC4Al [72] and autosomal recessive form caused
by homozygous mutations of thc ATP6NIB, which
cncodes the B1 subunit of hydrogen ion pump
cxclusively localized to the apical surface of a-
intercalated cclls of medullary collecting duct [73].
Morcover, two other autosomal recessive forms of
distal renal tubular acidosis have been described in
the sctting of sensorincural decafness. The two
responsible mutant gencs cncode the Bl
(ATP6VI1IBI1) and A4 (ATP6V0A4)subunits of the
apical proton pump, which arc co-cexpressed in the
endolymphatic sac, cochlca as well as the kidney
[74,75]. Therefore, mutations in the genes encoding
these subunits of proton pump define two other
catcgorics of paticents with distal renal tubular
acidosis with deafiness. Thesc paticnts typically have
inappropriatcly high urinc pH as well as abnormal
endolymph pH homcostasis, resulting in impaired
auditory function. Individuals with homozygous
mutations of B1 subunit genc develop dRTA and
dcafness at birth, with variable renal penetrance, as
majority of thesc patients do not develop progressive
renal failure in adulthood [76.77]. Compared to
patients with ATP6V1BI1 gene mutations, paticnts
with ATP6VOA4 mutations arc morc common, have
milder discase and become symptomatic later in life
and is associated with variable hearing impairment
[78].

Alport syndrome

Alport syndrome, a disordcer of defective cross-
linking of type IV collagen characterized by high
frequency sensorincural dcafness, ocular defects
including antcrior lenticonus, retinal flecks and
corncal dystrophy, and progressive nephropathy. The
incidence of Alport syndrome is 1:5000 and has been
reported to cause end stage renal discasc in 2% adults
[79], usually in the 6th decade of life, although ESRD
may occur carlicr in young girls [80]. In
approximatcly 85% of familics, Alport syndrome is
inherited as X-linked discase, which is duc to
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inactivation mutation of COL4AS gene located at
Xq22 and encoding aS chain of type 1V collagen.
Autosomal recessive Alport syndrome involving
homozygous or mixed heterozygous mutation of
COL4A3 or COL4A4 genes located to chromosome
2 are responsible for the syndrome in about 15% of
cascs, whilc autosomal dominant misscnsc mutations
may be the causce in a few of kindreds [81]. Type IV
collagen, comprising a3, a4, a5 chains is major
constitucnts of bascment membranes found in the
kidney, car and the cyes. The main defect in Alport
syndrome usually affects the a5 chain of type 1V
collagen, invariably lcading to faulty assembly of
a3, a4, a5 collagen nctwork of aural, ocular as well
as glomerular basement membranes, thus lcading to
a collagen discase that usually affect the kidneys and
the cars simultancously. Affected individuals, usually
males presented with persistent microscopic
hacmaturia, which start at birth. Protcinuria is
uncommon carly in lifc, but progressively worsens
with age and may occasionally result in ncphrotic
syndrome, indicating severe glomerulopathy as a
result of damage to the podocytes. The risk of
progression to ESRD is higher in affected males with
X-linked Alport syndrome compared to females;
greater than 90% of males progressed to ESRD by
age 40, compared to 12% in females with X-linked
Alport syndrome [80]. On light microscopy,
histologic changes shows interstitial and tubular
foam cells in young children, and as the discasc
progresses, there is patchy thickening of the
glomerular bascment membrane. In severe cases, the
glomerular basement membranc may split into
several layers interspersed by small clear arcas,
resembling a basket weave arrangement on clectron
microscopy. The degree of hearing loss varics, but
majority may have developed hearing loss requiring
hearing aids by 40 ycars of agc.

Kidney and car disorders caused by therapeutic
agents: Gentamycin and Cisplatin

Gentamicin and Cisplatin arc frequently associated
with nephrotoxicity and ototoxicity in hospitalized
patients, Even though the mechanism through which
these agents cause injury in the kidney and car is yet
to be fully clucidated, co-localization of specialized
transport proteins in the proximal tubular cells of
the kidneys and cells of the stria vascularis in the
middle car, which takes up and concentrate drugs in
this organs, scems to increasc the vulnerability of
these organs to drug toxicity [16]. The reported
cidence of gentamicin induced kidney dysfunction
ranges between 10-20%, characterized by a rise n
serum crcatinine and proximal tubular dysfunction.

The degree of tubular dysfunction varics, as proximal
tubulopathy, Fanconi syndrome or Bartter-like
syndrome have previously been described in patients
with gentamicin-induced nephrotoxicity [82]. As a
result of their physicochemical propertics,
gentamicin binds to apical membrane via transicnt
receptor potential cation channcl (TRPVI) and
subscquently concentrated by proximal renal tubular
cells, cells of medullary striavascularis and cochlear
hair cclls [83,84]. Once gentamicin undergo
cndocytosis and build up inside lysosomes,
ototoxicity and ncphrotoxicity occurs following
process involving stimulation of oxidative stress,
mitochondrial dysfunction, eventually lcading to
interruption of functions of subcellular organclles
[82]. Risk factors for ncphrotoxicity includes,
prolonged period of trecatment usually greater 10
days, volume contraction, underlying chronic kidney
discasc, advanced agc of patients, scvere
hypokalemia and co-administration with other
nephrotoxins such as radiocontrast agent, cisplatin
and amphotericin B. Host factor such as genetic
defect may potentiate ototoxicity. The presence of a
single nucleotide polymorphism in the mitochondrial
DNA (A1555G) has been documented in patients
who developed irreversible deafness after a single
dosc of gentamicin [85,86].

Cisplatin is associated with high incidence of
nephrotoxicity and ototoxicity, even following
prevention strategics involving volume repletion and
maintenance of drugs within therapeutic range
[87,88]. Although the mechanism of injury in both
the kidney and car is not very clear, nevertheless,
oxidative stress, vascular injury and induction of
intracellular injury pathway have been documented
to play a role in the patho-mechanisms of the injury
that cventually lead to apoptotic cell death [39].
Recently, OCT-2, a transport protcin have been
shown to contribute to the process of kidney injury
[82], it remains to be scen whether OCT-2 is
involved in the uptake of cisplatin in the car.Renal
manifestations of cisplatin-induced ncphrotoxicity
includenonoliguric AKI1, Fanconi syndrome
resulting from proximal tubulopathy and
magnesium wasting caused by injury in the loop
of Henle. Cisplatin caused hearing loss probably
through induction of apoptotic proccss in cells of
stria vascularis as well as cochlear hair cclls [90].

Conclusion

The molccular regulation of development of the car
and the kidney and the presence of some shared
developmental control gene polymorphisms and
structural proteins are documented. The syndromes
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discussed above arc aimed to exemplify the
overlapping physiology between ear and kidney. In
addition, potential pathologics undcrlying> human
car-kidney syndromes were grouped into two distinct
groups: [1] disorders of shared developmental
control gene polymorphisms; and [2] disorders of
shared transport and structural protcins, including
kidney and car disorders that arc caused by
therapeutic agents. A careful clinical assessment of
these mechanisms will facilitate better understanding
and diagnosis of car-kidney syndromes in affected
patients. Furthermore, there is need for continued

rescarch especially among the Nigerian population
as part of the global data.
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